Nordic Hydropower -The European Battery

EERA JP Hydropower Kickoff - Brussels – Sept 9 - 2019 Johan Bladh – Ph.D. Elec. Eng Senior Advisor Hydropower

Basic facts (Sweden)

- Large scale development started in 1910
- Most plants built 1950-1970
- Total installed power today is 16.2 GW
- 700 plants larger than 1.5MW
- 1800 plants smaller than 1.5 MW
- Very few pumped-storage powerplants.
- Annual production 65TWh (~45 %)
- Most capacity is located far up North
- No new builds to expect major remaining rivers are protected by environmental laws.

Map shows production of energy for electricity by source in Nordic NUTS 3 regions in 2007.

Flexibility

- Nordic hydropower systems are mixed reservoirtype and cascading schemes.
- Flexibility through large power-to-energy ratio (low utilization) and intermediate reservoirs.
- Large ability to balance net load variations on all time scales from seconds to seasons and years.
- N.B. no pumping involved!

Capturing the fuel

- The spring flood (snow melting) is stored in very large reservoirs (lakes) at high altitude.
- Large storage volumes needed.
- Total storage capacity in Sweden, Norway and Finland is 120 TWh.

Simulated 95 GW wind power in the North sea area

Two quite normal weeks require approximately 5 TWh of storage (30 GW x 7 days x 24 h)

Comparable to 1000 pumpstorage plants

Tesla PowerWall

Roof-top solar panel or similar

PowerWall©

- Balancing solar energy
- Energy security
- Off-grid solutions

Chineese PowerWall

Covering both sides of the Great wall of China^{*} with Tesla batteries would give ~1.2 TWh of energy storage

Only 1 % of the Nordic storage capacity

Nordic hydropower is perfect for balancing large amounts of windpower

But there are challenges

New operation pattern

Load variations are relatively small and predicable Windpower variations är larger (in GW), longer (multiple days) and do not follow any predictable pattern.

Environmental adaptation necessary

- Sweden just started a 20-year effort to modernize environmental conditions in permits and corresponding mitigation measures in powerplants and dams.
- Fully funded by the industry through the Vattenkraftens Miljöfond AB, owned by the eight largest hydropower producers.

R&D is key to find a suitable balance between conflicting objectives

R&D areas of interest

Environmental adaptation

Fish passage solutions Ecological flows Habitat restoration Dam safety implications Hydrology

Increasing flexibility

Understanding future operations patterns

Extending the operation range

Understanding wear and tear mechanisms

Integrating new technology and new methods, e.g., Digitalization Power electronics New materials And much more...

Cross-disciplinary projects have a large potential!

We need to learn as we go!

Additional challenges

- Long investment cycles (20-100 years)
- Rapid technical development
- Political uncertainties
- Very conservative industry

We need a plan to get the good stuff out there!

Demonstration is very important!

Specifications

Recirculatory with jet-pumps
Two 30 m long test arenas
Cross-section: 2 x 4 m
Max velocity = 2 m/s (16 m³/s)
Controlled light and temperature
River water: filtered/unfiltered

The Laxelerator flume lab in Älvkarleby

Porjus hydropower center

Thank you!

