Atomistic modeling of segregation and precipitation in ferritic steels under irradiation

Frédéric Soisson
CEA Saclay, Service de Recherches de Métallurgie Physique
Motivations

• Fe-Cr alloys : a model for ferritic and ferritic-martensitic steels (7-14%Cr), candidate materials for future nuclear reactors (Gen IV and fusion)
Potential problems :
 - α’ precipitation, strongly accelerated by irradiation → hardening and embrittlement
 - radiation induced segregation, e.g. Cr depletion at GBs → corrosion, embrittlement

A model system for spinodal decomposition (decomposition in unstable solid solution)

ASTRID
Sodium cooled fast reactor
Gen IV
(fuel cladding, wrapper tubes)

ITER
Fusion reactor (Test Blanket Modules)
Potential technological problems:

- Coherent $\alpha - \alpha'$ decomposition (accelerated by irradiation) in alloys with 9-14%Cr
 - hardening and embrittlement
- Cr depletion at grain boundaries (radiation induced segregation - RIS)
 - loss of corrosion resistance, embrittlement

- Special thermodynamic and diffusion properties \leftrightarrow magnetic properties
The precipitation kinetic pathways depend on point defect diffusion properties. Key points: the dependence of the migration barriers and the defect concentrations with the local configuration.

A multiscale Approach

Ab initio calculations (thermodynamics and diffusion)

Diffusion model on a rigid lattice

Atomistic Kinetic Monte Carlo simulations (AKMC)

Applications to Fe-Cr alloys

decomposition during thermal ageing
decomposition under irradiation
radiation induced segregation
comparison with experiments (3D atom probe and SANS)
DFT calculations of point defect properties

- **Vacancies**
 - weak Cr-V interactions
 - a low ΔH_2 migration barrier

- **Self-Interstitials (SIAs)**
 - Fe-Cr alloys: $<110>$ dumbbells
 - mixed dumbbell is stable ($E_b = +0.02$ eV)
 - With a low migration barrier
 - \rightarrow A rapid diffusion of Cr, both by vacancies and SIAs

$D_{Cr}^* > D_{Fe}^*$

F. Soisson, CEA Saclay, DMN/SRMP
Diffusion and interaction model

• **Pair interactions on a rigid BCC lattice:** free energy of one atomic configuration \(G_{\text{conf}} = \sum_{ij} g_{ij}^{(n)} \)
 FeCr alloys:
 - temperature dependent and composition dependent interactions
 \(\rightarrow \) effects of vibrational entropies and magnetic transitions.

• **Diffusion by thermally activated point defects jumps**
 - jump frequency: depend on the local environments

\[
\Gamma_{AV} = v_A \exp \left(-\frac{\Delta G_{AV}^{\text{mig}}}{k_B T} \right)
\]
 - migration barriers: broken-bond models

\[
\Delta G_{AV}^{\text{mig}} = G_{sys}(SP) - G_{sys}(ini) = \sum_i g_{Ai}^{SP} - \sum_{j,n} g_{Aj}^{(n)} - \sum_{k,n} g_{kV}^{(n)}
\]
 fitted on DFT calculations (0K)

• **AKMC: residence time algorithm**
 - thermal ageing: simulations with \(10^6 - 10^7 \) atoms, PBC and 1 vacancy \(\rightarrow \) time scale: \(t_{MC} = \frac{1}{\sum_i \Gamma_i} \)

 physical time: \(t = t_{MC} \times (\overline{c}_V^{MC} / \overline{c}_V^{eq}) \)

 - under irradiation: point defect formation and elimination mechanisms \(\rightarrow \) real time scale
THERMODYNAMICS AND DIFFUSION
Thermodynamics: the Fe-Cr phase diagram

- **Short range ordering below approximately 10%Cr, unmixing tendency above**

 Pair interactions on a rigid BCC lattice: $V_i = g_{FeFe}^{(i)} + g_{CrCr}^{(i)} - g_{FeCr}^{(i)}$

 - 1st and 2nd nn interactions, composition dependence fitted on DFT calculations of ΔH_{mix}
 (SQS, PWSCF, GGA-PAW)

 - Temperature dependence fitted on the experimental c_p and the $\alpha-\alpha'$ critical temperature

- **Phase diagram**: good agreement with the modified CALPHAD diagram (Bonny et al, 2010)

 \[V_i = g_{FeFe}^{(i)} + g_{CrCr}^{(i)} - g_{FeCr}^{(i)} \]

\[\Delta H_{mix} \] (meV)

\[T (K) \]

- Asymmetrical miscibility gap, non-vanishing Cr solubility at low T
Fe-Cr alloys: Tracer Diffusion Coefficients

- at 0K: DFT calculations of vacancy migration barriers (10 for D_{Fe*}^{Fe} and D_{Cr*}^{Fe})

- Vibrational entropies (ferromagnetic iron): $\Delta S_{V}^{for}(Fe) = 4.1k_B$ and $\Delta S_{V}^{mig}(Fe) = 2.1k_B$

- Acceleration at the ferro-paramagnetic transition in the α phase → corrections of the migration barriers, fitted on experimental tracer and interdiffusion coefficients

tracer diffusion coefficients in iron

- T_c rapidly decreases with the Cr concentration

F. Soisson, CEA Saclay, DMN/SRMP

EERA Conference, November 24-25, 2016, Birmingham | PAGE 9
Fe-Cr alloys: Interdiffusion Coefficients

- No experimental data below 900K
- The interdiffusion coefficients strongly decrease with the Cr content
- It's important to take into account the evolution of the vacancy concentration

PRECIPITATION KINETICS: THERMAL AGEING (NO IRRADIATION)
Kinetics of α-α’ decomposition: AKMC vs 3DAP

Fe-20%Cr T = 500°C

AKMC (E. Martinez, O. Senninger, CEA) 3D atom probe (Novy et al, GPM Rouen, 2009)
Kinetics of $\alpha-\alpha'$ decomposition: AKMC vs SANS

Small Angle Neutron Scattering experiments:
- 500°C: Bley (1992)
- 540°C: Furusaka et al. (1986)

- F/P transition: strong acceleration of the decomposition between above 35% Cr (lower T_C)
- Better agreement with experimental kinetics

F. Soisson, CEA Saclay, DMN/SRMP
PRECIPITATION UNDER IRRADIATION
Irradiation damage: short term evolution

Ion and neutron irradiations: displacement cascades
Molecular dynamics in α-Fe ($E_{\text{PKA}} = 20$ keV, 20 ps)

- **Displacements:** creation of vacancies (V), self-interstitials (I) and point defect clusters
 radiation damage in dpa (displacement pet atom)
 dose rate in dpa.s$^{-1}$

- **Replacements:** change of the lattice sites → ballistic mixing

- **Long term evolution**
 - acceleration of diffusion → thermodynamic equilibrium
 - elimination of excess point defect → solute fluxes → radiation induced segregation
 - ballistic mixing (in alloys: homogenization, disordering)

E.A. Calder (2010)
EAM potential
Molecular Dynamics

F. Soisson, CEA Saclay, DMN/SRMP
EERA Conference, November 24-25, 2016, Birmingham
Cr precipitation in iron under irradiation:
Experimental Observations

Fe-Cr based alloys, with 9-20%Cr at ≈300°C
the precipitation α’ (Cr-rich) is too slow to be observed during isothermal annealing

α’ precipitates have been observed after:
- neutrons irradiation
 Fe-9% and 12%Cr at 300°C 7 x 10^{-7} dpa.s^{-1}, 0.6 dpa V. Kuksenko et al, JNM 2013
 Fe-9 to 18% Cr 290°C 3.4 x 10^{-7} dpa.s^{-1}, 1.82 dpa M. Bachhav et al, SM 2014
- electron irradiation
 Fe-15%Cr at 300°C 3.9 x 10^{-5} dpa.s^{-1}, 0.7 dpa O. Tissot et al, SM 2016
- ion irradiation
 Fe-15%Cr at 300°C 5.2 x 10^{-5} dpa.s^{-1}, 0.7 dpa O. Tissot et al, MRL 2016

α’ precipitates have not been observed after:
- ion irradiation
 Fe-12%Cr at 300°C 2 x 10^{-4} dpa.s^{-1}, 0.5 dpa C. Pareige et al, JNM 2015
- ion irradiation
 Fe-15%Cr at 300°C 2.8 x 10^{-3} dpa.s^{-1}, 120 dpa O. Tissot et al. 2016
- electron irradiation
 Fe-15%Cr at 300°C and 40°C 2.5 x 10^{-10} dpa.s^{-1}, 10^{-4} dpa O. Tissot et al. 2016

General trend: strong acceleration of the precipitation at low/moderate dose rates
no precipitation at high dose rates
Point defect concentrations under irradiation

Rate theory

\[
\frac{dc_i}{dt} = G - R_c c_v - k_{tot}^2 D_i c_i \\
\frac{dc_v}{dt} = G - R_c c_v - k_{tot}^2 D_v c_v
\]

\[c_{v,i} >> c_{v,i}^{eq}\]

\[G = \sigma \Phi \ \text{creation} \ \propto \ \text{dose rate (dpa.s-1)}\]

\[R = 4\pi d_{rec} \left(D_i + D_v \right) / V_{at} \ \text{recombination I-V}\]

\[k_{tot}^2 : \text{total sink strength, elimination at sinks}\]

(grain boundaries, dislocations, point defect clusters,...)

Cluster Dynamics: evolution of point defect clusters

\[w^+(nv,v) \quad w^- (nv,v) \quad w^- (nv,i) \]

\[mi \quad w^- (nv,i) \quad i \]

Depending on the irradiation conditions, sink strengths vary between \(k_{tot}^2 = 10^8\) to \(10^{15} \text{ cm}^{-2}\)

Small vacancy clusters are usually the dominant sink, except at very low doses and under e- irradiations
Irradiation mechanisms in AKMC simulations

• **Formation of Frenkel pairs**

 Replacement collision

 Sequences (electron irradiation)

 1st nn replacements in 111 directions

 $n_{\text{rep}} = 10$

 Displacement cascades (ion and neutron irradiation)

 random 1st and 2nd nn replacements

 $n_{\text{rep}} = 100$

 within a sphere $R = 5 \text{ n}$

• **SIA-V recombination** ($d_{\text{rec}} = 3a$)

• **Point defect eliminations on perfect sinks**

 Clusters dynamics

 $k_{\text{tot}}^2(t)$

 AKMC simulations with random
distribution of individual pd sinks

 with the same strength

\[k_{\text{tot}}^2(t) \]

\[k_{\text{tot}}^2(t) \] increases
\Rightarrow c_i and c_v decrease
favors ballistic mixing

F. Soisson, CEA Saclay, DMN/SRMP

EERA Conference, November 24-25, 2016, Birmingham
Electron Irradiations

Experiments
O. Tissot et al
Scripta Materialia 122, 31-35 (2016)
Fe-Cr alloys – electron irradiations
300 and 400°C, 3.9×10^{-5} dpa.s$^{-1}$
One dose: 1.82 dpa

AKMC simulations
good agreement with experiments
coarsening regime
No significant effect of ballistic mixing
($k_{tot}^2 < 10^{12}$ cm$^{-2}$)

Fe-15%Cr
300°C
3.9×10^{-5} dpa.s$^{-1}$

Fe-15%Cr
400°C
3.9×10^{-5} dpa.s$^{-1}$
Experiments
O. Tissot et al
Materials Research Letters, 1-7 (2016)
Fe-15%Cr alloys – ion irradiations
300°C, 2.8 \times 10^{-3} \text{ dpa.s}^{-1}
One dose: 120 dpa, no precipitate

AKMC simulations
No precipitates at 120 dpa \left(k_t^{2} \approx 5 \times 10^{13} \text{ cm}^{-2} \right)
Suggest precipitates at low doses
(R > 1nm between approx. 0.1 and 10 dpa)
Precipitation under irradiation

- 3D Atom Probe of α' precipitation, neutron irradiation in supersaturated alloys
 Bachhav et al Scripta Mater. 74 (2014) 48
 V. Kuksenko et al, JNM 432 (2013) 160

AKMC simulations
Fe-18%Cr @ 563 K, 3.4×10^{-7} dpa.s$^{-1}$

Kuksenko et al (2012)
3DAP
Fe-12%Cr
300°C – 0.6 dpa
Conclusions on ballistic mixing

G. Martin, P. Bellon (e.g. Driven alloys, Solid State Physics, Vol. 50, pp. 189-331, 1997)

Ballistic mixing effects \rightarrow inverse coarsening, dissolution of precipitates, disordering
Thermally activated diffusion \rightarrow accelerated precipitation (in a supersaturated alloy)

Ballistic mixing is dominant at high irradiation intensity: $\gamma = \frac{D_{bal}}{D_{th}} > 1$

high sink strength \rightarrow low point defect concentration \rightarrow ballistic dissolution

$D_{bal} = a^2 \Gamma_{bal} = a^2 n_{rep} G$

$D_{th}^{irr} = 2 c_v^{irr} D_v$ with $c_v^{irr} \approx \frac{G}{D_v k_{tot}^2}$ when elimination at sinks is dominant

- for a given sink density (or sink strength), the irradiation intensity is independent of the dose rate G
- k_{tot}^2 depends on the dose rates

The ballistic mixing effects are mainly controlled by the sink density
RADIATION INDUCED SEGREGATION
• A-B alloy under irradiation: annihilation of excess point defects at GBs, dislocations, surfaces, etc...

• Onsager equations: \(J_i = -\sum_j L_{ij} \nabla \mu_j \)

For example: if \(L_{BV}/L_{BB} > 0 \) fluxes of V and B in the same direction
otherwise in opposite directions

Fe-Cr alloys (E. Marquis, Oxford)
ODS steel - 12% Cr – after thermal ageing

under irradiation (Fe ions)
500°C

Compared to...
300°C

Boundary

Cr

C

20 nm
AKMC: Radiation Induced vs equilibrium Segregation

Steady-state profiles:

\[\nabla C_{Cr} \propto -\left(\frac{L_{CrV}}{L_{FeV}} - \frac{L_{CrI}}{L_{FeI}} \right) \nabla C_{V} \]

one expects an enrichment of Cr at sinks at low T, a depletion at high T

Fe-10%Cr
T = 650 K, 10^{-6} dpa.s^{-1}

Fe-10%Cr
T = 950 K, 10^{-3} dpa.s^{-1}

\[e_{Cr}^{seg} = -0.1 \text{ eV} \]

F. Soisson, CEA Saclay, DMN/SRMP
EERA Conference, November 24-25, 2016, Birmingham
Conclusions

- AKMC simulations with effective interactions fitted on DFT calculation
 advantages: good description of driving forces, diffusion properties (correlations) and nucleation
 drawbacks: rigid lattice approximation, time consuming (→ coupling with cluster dynamics, phase field)

In Fe-Cr alloys

- Magnetic effects are important (impact on thermodynamic and diffusion properties)

- **Radiation accelerated precipitation**
 ballistic disordering at high dose rates, controlled by the evolution of the sink density
 important for the comparison between ion and neutron irradiation

- **Radiation Induced Segregation** is controlled by a balance between opposite effects of V and SIA
 → may explain the variability of experimental studies (≠ RIS in austenitic steels)

- **Related work, perspectives**
 - large scale models
 - evolution of the mechanical properties
 - Austenitic steels (Fe-Ni-Cr, γ-CFC): paramagnetic → a challenge for DFT calculations
Aknowledgments

Chu-Chun Fu, Thomas Jourdan, Estelle Meslin, Maylise Nastar, Orianne Senninger
CEA Saclay, SRMP

Enrique Martinez
Los Alamos National Laboratory

Jean Henry, Olivier Tissot
CEA Saclay, SRMA

Cristelle Pareige,
GPM, Université de Rouen