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Foreword 
 
At the time of writing this preface, the dislocation of the Post WW II World Order towards an emerging World Dis-
Order, is happening as we speak.  The Rule of Power almost instantly replaced the pre-existing Rule of Law in an 
unprecedented reshuffling of historical alliances, capturing the entire world political attention and largely 
eclipsing the existential emergency of collectively addressing climate change. 
 
Despite this highly regrettable juncture, the need to accelerate the EU clean energy transition is more than ever 
critical in times where fossil energy supply is increasingly weaponised and EU’s strategic autonomy more than 
ever challenged. 
 
Shifting our legacy fossil fuel-based economy towards a low-carbon driven one is indeed the only strategy 
ensuring a high level of energy sovereignty, i.e. guaranteeing a reliable and cheap energy supply, shielded from 
imported fossil fuel market spikes and geopolitical manipulations.  
 
At the same time, even in countries highly committed to advancing the energy transition, it is becoming obvious 
that the deep decarbonisation of the economy is more challenging than initially thought, requiring a fundamental 
shift in the ways we produce, store, distribute and use energy. 
 
Such a transition will require accelerated innovation to occur both from technology and societal perspectives, 
that will rely on a profound understanding of complex systems. Through its recent breathtaking advances, Artificial 
Intelligence (AI), with its capacity for data analysis, pattern recognition, and predictive modelling emerge as an 
essential enabler of this unprecedented dual technology and societal transformation. 
 
It provides a timely strategic perspective on how AI could best be used to accelerate the energy transition, delving 
deeply into specific applications, challenges, and future directions. It offers a holistic perspective enriching our 
understanding of both the immense potential and the inherent complexities of integrating AI into the energy sector 
design and operations.  
 
In particular, it examines how the various AI techniques — from machine learning and deep learning to digital 
twins and expert systems —can optimise energy production (renewable energy forecasting, smart grids, predictive 
maintenance), enhance efficiency (building energy management, demand response), and improve the overall 
sustainability of energy systems. 
 
The White Paper also discusses the critical challenges associated with the use of AI, including its resources 
footprint as well as ethical and trustworthiness considerations relating to its use in safety critical infrastructures, 
such as transparency, data quality, and model explainability, all highlighting the importance of establishing 
stringent ethical guidelines and a strong regulatory framework. 
 
Recognising that the energy transition, beyond a shift from traditional fossil fuel based technologies to low carbon 
ones, also requires a deep societal transformation, the White Paper emphasises how AI can help adopting a 
human-centric approach, showcasing through a number of real-world applications and case studies, how it can 
be used, notably to tailor energy solutions to individual needs, promote efficient consumption, and enhance the 
overall trust and acceptance of new technologies. 
 
The present White Paper constitutes an invaluable resource for researchers, policymakers, industry professionals, 
and other AI stakeholders, providing a comprehensive overview of AI's transformative potential in shaping a 
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sustainable energy future. It demonstrates and showcases the multiplicity of AI applications enabling an 
accelerated understanding, planning and implementation of the energy transition while highlighting its intrinsic 
challenges calling for an indispensable and well-designed strong regulatory framework guaranteeing it actually 
delivers within stringent resources and ethical constraints. 
 
Finally, the present paper should be considered as a timely, though time stamped contribution, for better 
assessing AI technologies, of which the speed of development and high unpredictability call for modesty and 
continuous re-assessment. 

Adel El Gammal 
EERA Secretary General 
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Executive summary 
 
Artificial Intelligence (AI) is playing an increasingly important role in the energy sector, offering transformative 
benefits across multiple facets of energy production, distribution, consumption, and management. Several key 
ways in which AI is being used and its importance are: 
 

• Optimisation of Energy Production and Distribution 
o Grid Management: AI can optimise the operation of electrical grids by predicting demand and 

generation, providing recommendations in real-time to solve technical problems (e.g., grid 
congestions, under/over-voltage), and predicting outages. Advanced algorithms help balance 
supply and demand in real time, reduce energy loss, and improve grids' reliability. 

o Renewable Energy Integration: AI can help manage the variability and uncertainty of renewable 
energy sources, such as wind and solar. Machine learning algorithms forecast weather 
conditions and energy production from renewables, enabling more efficient integration into the 
grid and reducing reliance on fossil fuels. 

o Energy Storage Management: AI optimises the use of energy storage systems by predicting the 
best times to charge and discharge batteries, reducing energy costs and ensuring a steady 
supply. 

• Energy Efficiency and Consumption 
o Smart Meters and Smart Homes: AI-powered smart meters and home automation systems 

monitor and control energy usage in real time, enabling consumers to optimise their energy 
consumption, reduce waste, and lower costs. 

o Building Energy Management: AI systems can control heating, cooling, and lighting in buildings 
based on occupancy and weather forecasts, reducing energy waste and improving efficiency. 

o Demand Response: AI can manage demand-response programmes, which incentivise 
consumers to reduce their energy use during peak demand periods, lowering overall 
consumption and minimising stress on the grid. 

• Predictive Maintenance 
o Asset Management: AI can predict when power plants, turbines, and other energy assets are 

likely to fail (and explain the causes), allowing for proactive maintenance and reducing 
downtime, while increasing safety. This leads to cost savings and increased asset life. 

o Fault Detection and Diagnostics: AI can detect anomalies in energy systems, such as grid faults 
or equipment malfunctions, and quickly diagnose the issues, minimising operational 
disruptions. 

• Advanced Data Analytics and Forecasting 
o Energy Demand Forecasting: AI can analyse historical data, weather patterns, and socio-

economic trends to predict energy demand more accurately. This helps energy providers plan 
better for future needs and optimise their operations. 

o Price Forecasting: AI can forecast energy prices by analysing market conditions, geopolitical 
events, and supply-demand imbalances, helping businesses and consumers make more 
informed decisions about when to buy or use energy. 

• Sustainability and Carbon Emissions Reduction 
o Carbon Footprint Monitoring: AI can track and analyse carbon emissions across the energy 

supply chain, helping companies meet sustainability goals and comply with regulations. 
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o Renewable Energy Forecasting: AI can predict renewable energy output (like solar and wind), 
enabling better planning and minimising the use of fossil fuels when renewable energy is low. 

o Optimisation of Fuel Usage: AI models help optimise the use of fossil fuels in power generation 
by adjusting operations to reduce emissions while maintaining reliability. 

• Energy Trading and Market Efficiency 
o Automated Energy Trading: AI algorithms are used in energy markets to predict price 

movements and make high-frequency trading decisions. This helps market participants, such 
as utilities and financial firms, optimise their energy purchasing strategies. 

o Supply Chain Optimisation: AI can optimise the entire energy supply chain, from raw material 
extraction (e.g., coal, natural gas) to delivery and consumption, improving efficiency and 
reducing costs. 

• Decentralisation and Smart Grids 
o Decentralised Energy Systems: AI supports the development of decentralised energy systems, 

where consumers (e.g., with rooftop solar or small wind turbines) can both generate and 
consume energy. AI helps to manage the flow of energy in and out of these systems, allowing 
for better integration into the larger grid. 

o Blockchain and AI Integration: AI, combined with blockchain, is being explored to create 
decentralised energy trading platforms, where consumers can directly trade energy with each 
other, reducing transaction costs and improving market efficiency. 

• Electric Vehicles (EVs) and Charging Infrastructure 
o EV Charging Optimisation: AI optimises the charging of EVs, predicting when to charge based 

on grid conditions and user preferences, ensuring an efficient, cost-effective system. 
o EV Fleet Management: AI is used to manage fleets of EVs, ensuring that they are charged and 

maintained properly, and coordinating their use to minimise downtime. 
 
AI's importance in the energy sector lies in its ability to drive efficiencies, improve decision-making, reduce 
environmental impact, and enable the transition to a more sustainable energy future. By improving energy 
management, predicting trends, optimising infrastructure, and enabling smarter consumer behaviour, AI is key to 
the modernisation of the global energy landscape. 
 
In this position paper, EERA analyses not only the current state-of-the-art and specific use cases and success 
stories in which AI is driving new advances in the energy sector but also the technology perspective that will guide 
the future, both for the research and production domains. 
 
Lateral outcomes that AI is producing are studied in terms of the potential pitfalls and limitations that show up 
when using AI, the trustworthiness that must be achieved, the human-centric approach for property harnessing 
AI in social research, including the benefits for the energy sector, and the energy consumption and CO2 emissions 
that AI produces in large data centres. 
 
Finally, some conclusions and future steps are described. 
 
By the way, most of this executive summary has been written by generative AI - demonstrating its potential in 
helping humans structuring and presenting relevant information. 
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Introduction  
 
The European Commission defines Artificial Intelligence (AI) as software systems created by people that, when 
faced with a complex objective, operate in the physical or digital realm by perceiving their environment, acquiring 
and interpreting structured or unstructured data, reasoning on the knowledge, processing that information, and 
deciding on the best actions to achieve their goal. 
 
AI is a key component of the fourth industrial revolution, and as in other sectors, it is already being applied in the 
energy industry. But how can it help meet Europe’s decarbonisation goals? Its role will be crucial in achieving a 
more sustainable future as we are now in a period where energy systems are becoming increasingly complex as 
demand grows and decarbonisation efforts intensify. 
 
Yet a clean, modern and decarbonised grid will be vital in the broader move to a net-zero emissions economy. 
Some steps beyond are data centre operators exploring alternative power options, like nuclear technologies, to 
power sites or storage technologies such as hydrogen. Also, companies’ investments in emerging tech such as 
carbon removal, to remove CO2 from the air and store it safely. 
 
As in the previous cases, AI can also play a role in overcoming barriers to integrating the necessary vast amounts 
of renewable energy into existing grids. For example, the variability in renewable energy production often results 
in overproduction during peak times and underproduction during lulls, leading to wasteful energy consumption 
and grid instability. By analysing vast datasets, from weather patterns to energy consumption trends, AI can 
forecast energy production with remarkable accuracy. Moreover, AI helps to simplify processes aimed at 
improving energy efficiency and facilitating the transition to renewable energy. 
 
For the sake of awareness, Elsevier has launched the ‘Energy and AI’ journal. Focal points of the journal include 
but are not limited to: automation of science discovery related to energy materials and chemistry; digital twinning 
or big data analytics of complex energy processes/systems; data-driven design of energy materials, devices and 
systems; internet-of-things and cyber-physical energy systems; AI for human factors in energy-related activities; 
virtual reality applied to energy and environment; autonomous systems for energy efficiency maximisation; 
hardware for data collections in energy systems; data science for energy applications; hybrid data-driven and 
physical modelling for energy-related problems; intelligent control of energy systems; AI, energy and society; AI 
safety, reliability and ethics within energy applications; AI for life-cycle assessment or energy and decarbonisation 
roadmaps; or, energy robotics. 
 
So it is clear that AI will play a cornerstone role in achieving a clean energy transition thanks to the huge amount 
of available data, but there are also some drawbacks that should be taken into account. In this data-rich field, 
there is a growing need for enhanced information sharing and more powerful tools, such as those offered by AI, 
to plan and operate evolving energy systems. This need arises just as AI capabilities are advancing rapidly. Since 
2010, as machine learning models have become more sophisticated, the computational power required to develop 
them has doubled approximately every five to six months. 
 
On the other hand, the use of supercomputers to develop AI capabilities is an energy consumption and CO2 
producer per se as it represents 1.5% of the yearly world electricity consumption according to the IEA (this 
percentage increases to 6% if we account for ICT as a whole). Thus, Microsoft, which has invested in ChatGPT 
maker OpenAI and has positioned generative AI tools at the heart of its product offering, recently announced its 
CO2 emissions had risen nearly 30% since 2020 due to data centre expansion. Google’s GHG emissions in 2023 
were almost 50% higher than in 2019, largely due to the energy demand tied to data centres. So a question arises, 
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do the benefits that AI brings to help reducing CO2 emissions outweigh the increased energy consumption and 
CO2 emissions it requires and causes? 
 
Even more, are we properly accounting the energy consumption that the world produces as “simple” users of 
generative AI tools such as ChatGPT, Copilot, Gemini, etc.? In this scenario, will the recent launching of DeepSeek 
(Deepseek-AI et al. 2024) change this trend dramatically as it claims that only one tenth of the electric power is 
required for providing similar results so the building of those huge data centres will become obsolete? 
 
 

 
 
Fig. 1. Data centre electricity consumption around the world. Source: IEA, Electricity 2024. CC BY 4.0. 
 
 
Last but not least, regulators including the European Parliament are beginning to establish requirements for 
systems to be designed with the capability of logging their energy consumption. Under this wider scenario, AI will 
necessarily be the pillar of extracting useful information from this amount of data that will result in an effective 
clean energy transition. 
 
In this paper, EERA analyses how AI is affecting the energy research domain and what trends are pushing the 
coming years, taking into account the associated drawbacks. 
 

AI state-of-the-art and trends 
 
AI is a clear advantage, anyway. For example, AI, along with the use of robots and drones, enables faster, safer, 
and more efficient operations and inspections in the environments where infrastructures are located. Moreover, 
innovative technologies such as AI, Building Information Modelling (BIM), and digital twins make the operation of 
infrastructures significantly more efficient. Digital twins are also very useful for creating simulations of 
infrastructures, allowing for performance optimisation through detailed scenarios and analyses in virtual 
environments. 
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AI algorithms can also very accurately predict the likelihood of incidents occurring in installations, making it easier 
to implement preventive measures before problems arise. In the event of a failure, AI analyses the causes, severity, 
and potential consequences, quickly determining the necessary actions to be taken. This improves safety and 
reliability while also reducing maintenance costs. 
 
AI cannot store and transport energy, that is true, but it is indeed useful for optimising operations and improving 
decision-making processes. For instance, AI algorithms are used to predict gas demand and consequently adjust 
transportation and storage operations. Additionally, AI helps to identify patterns in energy consumption that can 
lead to opportunities for implementing more sustainable practices. 
 
In other domains, such as the production and supply of various energy products, the application of AI is already a 
reality. This is based on a fully connected Industry 4.0, with real-time data processing capabilities, which allows 
for maximising production and distribution capacity, and continually improving efficiency. 
 
Closer to the research activity, AI algorithms analyse data from renewable energy sources such as solar panels 
and wind turbines, predict energy generation, adjust demand, and improve system performance. By incorporating 
factors such as weather patterns and historical data, AI delivers more accurate forecasts, ensuring the efficient 
utilisation of renewable resources. 
 
In use cases with challenging requirements in terms of computational time (e.g., solving an optimisation problem 
with a state-of-the-art solver takes minutes or hours), imitation (supervised) learning and reinforcement learning 
(RL) are emerging as potential solutions due to the very fast inference time of AI models, such as artificial neural 
networks. Imitation learning requires a model-driven “expert” that generates demonstrations that a second data-
driven model attempts to replicate/learn. In contrast, RL involves learning optimal policies through interaction 
with an environment. Instead of relying on pre-labelled data, the model explores “autonomously” different actions 
and learns from the consequences of those actions. Success cases like AlphaGo Zero AI (Silver et al., 2017) showed 
training capability (i.e., capacity to discover new knowledge from scratch) with improved convergence of RL 
without human examples/guidance or domain knowledge. Yet, one of the key outcomes of research on GPT-3 
language models was the development of RL from human feedback. In this process, human-submitted prompts 
are used to fine-tune GPT-3 (Christiano et al., 2017). The AI creates a model to identify the reward function that 
best reflects human judgments. Developments in ‘planning’ with Monte Carlo tree search that dynamically visits 
and simulates the future state for narrowing down the search space (Silver et al., 2017), or ‘imagination’ where AI 
agents can build the capability to ‘imagine’ and reason about the future and construct a plan using this knowledge 
(Racanière et al., 2017), can significantly enhance RL-based agents' predictive capabilities. These advancements 
are particularly relevant for various use cases in the energy sector, offering improved forecasting and decision-
making. Scalability remains a major challenge in the field of RL. Research in distributed and hierarchical RL offers 
promising solutions to this issue, paving the way for broader industrial applications (Mussi et al., 2024). 

Knowledge representation is also a key aspect of the success of data-driven approaches. Graph-based 
representation, particularly graph neural networks or knowledge graphs, are emerging as very efficient knowledge 
models (Dong et al., 2020) for large-scale structured data in complex domains such as electrical networks. Also, 
in terms of knowledge representation, large language models (LLM) are going beyond textual data. Foundation 
models pre-trained on a broad spectrum of generalised and unlabelled data can be applied to different general 
tasks (i.e., zero-shot learning), such as time series forecasting (Das et al., 2023) or dynamic system simulation 
(Seifner et al., 2024). 
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Another trend is the hybridisation between AI and other disciplines, particularly physics and operations research. 
One notable example is physics-informed machine learning, which integrates physical laws and constraints into 
ML models to improve their accuracy and generalisation. It can also accelerate the simulation capabilities of 
traditional simulation techniques and software (Karniadakis et al., 2021). Another remarkable development is the 
combination of ML with mathematical optimisation, exploring several possibilities such as the fast approximate 
prediction of solutions to combinatorial optimisation problems and the combination of data-driven inference with 
combinatorial optimisation solvers for structured logical reasoning (Kotary et al., 2021), or the use of implicit layers 
to directly enforce constraints within neural networks (Amos and Kolter, 2017). 

In addition, AI is increasingly being integrated into the field of safety and reliability, particularly through the 
application of Machine Learning (ML). ML methods have demonstrated strong capabilities in processing complex 
data, identifying patterns, and making predictions in various domains of industrial safety and reliability. These 
applications include fault detection and diagnosis, anomaly detection, system prognosis, reliability analysis, and 
risk assessment (Tamascelli et al., 2024). ML techniques, particularly supervised learning, have been widely 
adopted, offering practical solutions to manage safety risks and enhance system reliability. However, the 
implementation of ML in these areas is still in its early stages, characterised by significant potential for future 
exploration and development (Xu and Saleh, 2021; Nassif et al., 2021). 
 
Supervised learning remains the most dominant ML technique in safety-related applications, particularly in fault 
detection and diagnosis, which rely on classification methods to identify and categorise system anomalies. 
However, recent studies indicate a growing interest in semi-supervised and unsupervised approaches, which are 
proving effective in anomaly detection and risk assessment, where labelled data are often scarce. Unsupervised 
clustering algorithms have been successfully applied to detect anomalies in complex systems, while 
dimensionality reduction techniques further enhance the efficiency of these models by simplifying high-
dimensional data (Fuertes et al., 2016; Sunal et al., 2022). 
 
Despite significant progress, challenges remain in applying ML to safety and reliability. Data scarcity, particularly 
the lack of labelled and real-world industrial data, poses substantial obstacles to ML model development. Most 
research relies on experimental or simulated data, which may not fully capture the complexities of actual 
operating conditions. Moreover, data quality, trust, and explainability issues are central to the ongoing integration 
of ML in safety-critical environments. Interdisciplinary collaboration between data scientists and safety experts 
is crucial to address these challenges and foster the development of more interpretable and reliable ML models 
for industrial safety applications (Paltrinieri et al., 2019; Tamascelli et al., 2023). 
 

AI and energy: some examples 
 
There is a plethora of use cases in which AI has been applied to the energy sector. The reader can consult 
(Hoffmann et al. 2022, Wang et al. 2024), for example. In this section, some fields will be analysed to illustrate the 
impact of AI on them and how it is pushing efficiency in the energy sector. 
 

Nuclear materials 
 
AI and especially ML are increasingly integrated into energy materials science to accelerate materials discovery 
(entirely new materials) and development (composition and/or architecture tuning to target use for a specific 
application, or simply to improve specific properties, within a known class of materials), in so-called materials 
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acceleration platforms (MAPs) (Flores-Leonar et al., 2020; Wagner et al., 2021). They are equally used to optimise 
fabrication and manufacturing processes (Ciccone et al., 2023), as well as to enhance the reliability or the reach 
of methodologies applied to the prediction of material performance and property degradation in operation (Gupta 
et al., 2023; Ferreño et al., 2021). Finally, they are entering the field of materials health monitoring in operation 
(Azad et al., 2023), by enabling the fast analysis of thousands of data coming from sensors applied to materials 
and components, discriminating between noise and actual signs of “materials illness”, especially when coupled 
with materials and components’ digital twins (Kreuzer et al., 2024). 
 
For materials discovery or development AI-driven algorithms are used to identify new materials with desired 
properties, by analysing vast datasets of materials features (e.g. composition) and their corresponding properties, 
to significantly speed up the discovery or development process (Gupta et al., 2023; Yu et al., 2023).  
  
For fabrication and manufacturing process optimisation, ML models are used to identify the best set of relevant 
production parameters to provide the desired properties and ensure reproducibility (Ciccone et al., 2023; Boobalan 
et al., 2023). This is especially important in the case of advanced manufacturing processes such as additive 
manufacturing (3D printing), but may also find application in the optimisation of traditional metallurgical 
processes (e.g. thermal treatments), by predicting the outcome of changing parameter sets and reducing 
experimental trials. 
 
AI models can also be used to predict material properties and their evolution (generally degradation) during 
operation, based on examples of measurements and testing. Examples are thermal conductivity (Bhandari et al., 
2023), radiation resistance and mechanical strength (Ferreño et al., 2021). This is important whenever the 
management of the lifetime of materials and components needs to be optimised. In these applications, one can 
distinguish, like in other applications, different underlying philosophies: 
 

• “Brute force”: a large number of data on a given property (e.g., embrittlement of reactor pressure vessel 
steels under irradiation, measured as increase of the ductile-brittle transition temperature) are used to 
train the system to predict it, given a set of predefined variables that are generally always known (e.g., in 
the same example, radiation fluence and flux, temperature, and material composition) (Jin et al., 2019; 
Ferreño et al., 2021; Bhandari et al., 2023). 

• “Physics-informed”: machine learning methods are trained by providing not only examples of correlations 
between the values of a given set of variables and the property of interest but also physical information 
in support of the correlation, often concerning microstructural material features, which, however, may 
not be easy to obtain for any material (so in some cases they may be provided by more or less reliable 
physical or semi-empirical models) (Bharadwaja et al, 2022; Zhu et al., 2022). 

• “In support of physics”: machine learning is used to “close the gap” between the underlying complexity of 
the structure of materials and the resulting properties and behaviour, for example by developing machine 
learning interatomic potentials based on the first principle calculation input, which are then used in a 
physical model (e.g. molecular dynamics) to calculate the properties of the material of relevance or to 
simulate their evolution in time (Anstin & Isayev, 2023); or else by providing physical quantities such as 
energy migration barriers as functions of the local atomic environment (Castin & Malerba, 2010). 

 
The combination of ML-improved predictive capabilities with the ML-driven analysis of the input from sensors to 
test non-destructively materials and components in operation, to monitor the evolution in time of specific 
materials properties, can find its synthesis in the form of digital twins (Kreuzer et al., 2024). These enable the 
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monitoring and prediction of the behaviour of materials and components in service, thereby optimising the 
lifetime management of the corresponding devices. 
 

Electrical grids 
 
Energy is a high-risk sector, and there it has been using, for many decades, expert systems (ES) as the core AI 
technology due to a) its structured and organised way of representing and storing expert knowledge, b) consistent 
decision-making, i.e., by applying the same rules and knowledge to similar situations, and c) the possibility 
documenting and transferring expert knowledge. One of the first state-of-the-art reviews was published in 1989, 
framing AI under the name “expert systems” (Zhang et al., 1989), and several energy storage used in the electricity 
power system were also reviewed (Madan and Bollinger, 1997). Nowadays, ES is still available in commercial 
products and grid automation, e.g., grid protection systems and restoration (Kalra, 1988), and is still an active area 
of research in energy (Srivastava and Butler-Purry, 2006; Yang et al., 2022; Pruvost et al., 2023). Examples of 
industry success cases with ES are the online assistant, called SPARSE, to the operators of Substation Control 
Centres of the Portuguese Transmission System Operator (TSO) for intelligent alarm processing and advising 
regarding operator actions (Vale and Moura, 1993) and the online transient stability analysis system at the B.C. 
Hydro control centre (Demaree et al., 1994). 

The demand for adaptable solutions capable of learning from data (i.e., gathered from field sources or employing 
traditional physics-driven software tools for energy system simulation) increased significantly with the expansion 
of power systems and the integration of new energy sources. This motivated research in Artificial Neural Networks 
(ANN) and other machine learning (ML) methodologies, including decision trees and fuzzy inference systems. 
Initially concentrated on power system operation, this research gained momentum as the 21st century began, 
broadening its scope to encompass emerging applications such as demand response, RES forecasting, battery 
storage optimisation, and asset management (Kezunovic et al., 2020). Examples of cases of success in industry 
are the use of decision trees and ANN for dynamic security assessment in Hydro-Québec and BC Hydro power 
systems (Huang et al., 2002); the use of several ML models (e.g., ANN, gradient boosting trees) for short-term RES 
forecasting (Bessa et al., 2017); the prediction of the distribution network faults that are likely to occur under 
specific circumstances related to past storms, including their respective repair duration based on historical data 
of past storms and actual fault occurrences during storms (Vähäkuopus et al., 2019); or, a data-driven system that 
provides personalised Energy Efficiency (EE) recommendations for commercial customers and uses association 
rule learning to discover EE adoption patterns, i.e., relationships between various customer characteristics and 
EE products (Zawadzki et al., 2016). 

Recent breakthroughs in AI research have led to a reinforced use of this technology within the energy sector, such 
as increased performance and decreasing costs of hardware, advances in deep learning (DL) for different areas 
such as computer vision or natural language processing (NLP), new paradigms such as transfer learning and 
generative AI, automated and low-code AI platforms, and brain-inspired new AI concepts (Hassabis et al., 2017). 
Moreover, industry-driven challenges, exemplified by L2RPN (Learning to Run a Power Network) from RTE (Le 
réseau de transport d’électricité), have prompted collaboration among AI scientists and power system specialists 
(Marot et al., 2021). These collaborative efforts motivated different groups towards the development of a new 
reinforcement learning-based assistant to aid human operators in operating electrical grids during normal 
operations and when the system is under stress due to overloads or disturbances. A similar industry-driven 
approach is being followed by the HORIZON European projects AI4REALNET (“AI for REAL-world NETwork operation”) 
and AI-BOOST (“Artificial intelligence for better opportunities and scientific progress towards trustworthy and human 
centric digital environment”), where AI-friendly digital environments for power grids, railway, and air traffic 
management are being developed to boost the development and validation of new AI techniques. 
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Two other emerging paradigms in the energy sector are physics-informed ML and edge intelligence. In problems 
where the numerical analysis approaches are complex to design or too expensive to compute accurately, ML 
techniques are being used to solve algebraic equations or handle scenarios with limited data directly. For instance, 
the work of (Stiasny and Chatzivasileiadis, 2023) applies physics-informed ANN for time domain simulations of the 
power system dynamic response to load disturbances. The need to control locally distributed energy resources or 
microgrids, or concerns with energy-intensive computing and data privacy/security, motivates the research in 
edge AI for energy systems (Himeur et al., 2023). 

Energy system modelling 
 
The field of energy system modelling is a well-established research area and has for decades utilised optimisation 
methodology to find both the optimum mix of capacities (capacity expansion modelling) and the optimum 
operation of a given capacity mix (operational modelling) [Chang 2021]. With the advent of AI methodology, the 
sector has gained another tool in its toolbox, and several review articles have been published on the application 
of these methods in the field [Ahmad 2021, Bordin 2020, Alabi 2022]. As the modelling field is large, and the 
potential applications of the models vary both in function, timeframe and geographical scope, so does the 
application of AI techniques. A general trend in the field is that the models are increasingly utilised for the study 
of systems with ever stronger cross-sectoral interaction (electricity, heat, gas), larger shares of non-regulated 
renewable power generation, stronger utilisation of storage technologies on both short and long term scale and a 
strong drive towards decarbonised energy systems. AI may aid in all of these aspects, but the field has yet to see 
the methodology penetrate the field, and more traditional optimisation and decomposition methodologies still 
dominate. There are, however, experiments with production estimation, storage utilisation optimisation, demand-
response quantification, automated market participation, or dynamic infrastructure utilisation that show 
promising results.  
 
The application of AI methods is hampered by data quality and abundance issues as well as large shares of 
proprietary or restricted data, high input dimensionality and complex system behaviour with large fluctuations, 
and the non-transparent black-box nature of the model. Although there is work being carried out on several of 
these fields such as explainable AI, the current status is still hampering the application of these technologies. The 
field is also challenged by a lack of competent and experienced experts in the field and a general lack of familiarity 
with the possibilities among decision-makers.  
 
Even given these challenges the application of AI technology is expected to play an increasing role in the planning 
and operation of the energy system. EU has outlined their view on this in the study “The Role of Artificial 
Intelligence in the European Green Deal (europa.eu)”, where specific regulatory actions are recommended to aid 
the utilisation of the technology toward the fulfilment of Europe's climate targets.  
 

The electricity market 
 
In electricity markets, AI has been increasingly applied across a range of functions, including forecasting 
electricity load, optimising electricity production, estimating prices in wholesale electricity markets, and 
enhancing grid management. First, AI is employed to forecast electricity demand (Raza and Khosravi, 2015; Nti et 
al, 2020). Accurate demand predictions are very crucial because they help balance market supply and demand, 
prevent shortages, and minimise costs. For forecasts, AI algorithms utilise historical data on energy demand, 
climate data, and customer behavioural patterns (Antonopoulos et al., 2020). Second, AI-based home and building 

https://www.europarl.europa.eu/RegData/etudes/STUD/2021/662906/IPOL_STU(2021)662906_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2021/662906/IPOL_STU(2021)662906_EN.pdf
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systems improve energy use efficiency. By analysing real-time data, AI optimises energy consumption patterns 
(Shareef et al., 2018). This helps reduce peak load stress on the grid. Regarding the grid, AI is also used to manage 
decentralised grids with renewable energy sources (Zhou et al., 2019). Production from solar and wind is volatile 
in terms of the time of the day, the season, weather conditions, and grids fed by these sources, making the 
management of the grid challenging. AI can monitor and adjust in real-time, which maintains stability (Omitaomu 
and Niu, 2021). AI is also applied to predict electricity prices for electricity trading in wholesale markets (Ye et al., 
2019). Dynamic pricing mechanism, supported by AI, leads to more effective bidding strategies. Moreover, AI is 
used to predict failures in equipment by following their patterns, by which maintenance becomes more effective 
in terms of cost and time (Cheng and Yu, 2019). 

There are several laws, directives, and regulatory frameworks in the EU that directly or indirectly influence AI use 
and digitalisation in electricity markets. Among them are the Electricity Market Regulation, Renewable Energy 
Directive, Network Codes and Guidelines, Energy Efficiency Directive, and Energy Performance of Buildings 
Directive. For instance, the Electricity Market Regulation and Network Codes and Guidelines encourage the use of 
digital tools, including AI. While the former focuses on establishing an integrated, competitive, and consumer-
centric electricity market across the EU, the latter sets the technical rules for managing electricity grids. The 
Renewable Energy Directive promotes smart grid technologies and energy storage systems that benefit from AI 
applications. The Energy Efficiency Directive and Energy Performance of Buildings Directive support the use of 
smart technologies to improve the energy performance of buildings. 

The EU’s approach to AI in the electricity market can be viewed from both positive and cautionary angles. On the 
one hand, aligned with the EU’s climate goals, AI is expected to play a crucial role in reducing the carbon intensity 
of the electricity sector by optimising the integration of renewable energy and enhancing carbon capture 
technologies. The EU emphasises the importance of digitalisation, including AI, to create a more flexible and 
efficient energy system. For example, the Clean Energy for All Europeans Package supports the integration of AI 
to optimise energy use and improve market design, while the European Green Deal encourages AI applications to 
increase energy efficiency and reduce emissions. 

On the other hand, the EU stresses the need for transparency, cybersecurity, and ethical AI usage. First, the Data 
Governance Act promotes secure data sharing in energy markets, which is crucial for AI applications that rely on 
large datasets to function optimally. The European Data Strategy further supports the development of energy data 
spaces, where AI tools can analyse and optimise energy systems more effectively. Second, the NIS2 Directive 
(Network and Information Security) highlights the protection of critical infrastructure, including electricity 
markets. AI systems in this sector must comply with cybersecurity standards to safeguard grid operations from 
cyber threats. 

Further advancements in AI present many opportunities for electricity markets. For instance, to achieve more 
accurate predictions of weather, AI will enhance the integration of renewable energy into the grid, improve the 
effective management of energy demand in homes and buildings, and facilitate the management of storage 
systems. More advanced AI algorithms might also improve peer-to-peer energy trading and microgrid operations. 
By doing so, a decentralised energy system based on prosumers can be optimised (Hua et al, 2022). Furthermore, 
the usage of blockchain technologies to provide decentralised energy trading platforms can make transactions 
more secure. 

 



 
 

 
An analysis of the implementation of 
artificial intelligence in the energy sector 

Technology perspective 
 
There is a plethora of use cases in which AI has been applied to the energy sector. The reader can consult 
(Hoffmann et al. 2022, Wang et al. 2024), for example. In this section, some fields will be analysed to illustrate the 
impact of AI on them and how it is pushing efficiency in the energy sector. 
 
 

Nuclear materials 
 
The use of artificial intelligence techniques, particularly machine learning, in energy materials science has many 
pitfalls, which are obviously common to other applications. The ways to avoid these pitfalls, or minimise their 
consequences, will likely determine future trends, after the initial exponential growth of ML applications. 
 
ML models rely entirely on data quality and quantity. Both of these are not often guaranteed in materials science. 
Data quality can be an ill-defined parameter, given that the quality of a data point in a data set might be time-, 
technique- and purpose-dependent. High-quality data obtained twenty years ago might not be considered of high 
quality by current standards, while for example, the same micrograph might be very useful to deduce information 
on a given type of microstructural feature, but not on others. Or else, the same measurement or testing technique, 
applied in different laboratories, by different operators, according to different practices or standards, may not 
provide results that are consistent with those of other laboratories, operators and practices or standards, thereby 
preventing their safe inclusion in the same dataset. Alternatively, the same type of information or property may 
be biased by the technique used to obtain it, be it experimental or computational. On the other hand, depending 
on the measurement or testing technique, data production may be a very time-consuming process. The latter 
problem often leads to the need to include in the training dataset also old, inconsistent, or biased data, because 
of a lack of better sources, thereby increasing the probability of incorrect or imprecise predictions. Because of 
these difficulties, it will take time before ML techniques can be routinely used indiscriminately in all fields and 
instances of materials science.  For this to happen, standards or at least best practices need to be defined for all 
techniques used to produce data. Alternatively, or in parallel, these techniques need to be replaced by other, faster 
ones, preferably non-destructive, that enable the production of large sets of consistent data (high throughput) 
that are predictors of the results of using the slower techniques. However, the representativeness of these 
measurements as predictors of other properties, or substitutes of other techniques, needs to be proven a priori. 
Yet another alternative is to use machine learning techniques that can provide reasonable predictions also 
starting from a limited set of data (few shot learning - Song et al., 2023). Thus the foreseeable trends of success 
will be constrained to machine learning applied to either newly produced data in a high throughput scheme, or 
any way consistent with each other because of the existence of standards (e.g. mechanical properties), or else to 
potentially limited data sets obtained in a fully consistent way, using few-shot learning. Thus, despite the vast 
potential of machine learning techniques in materials science, its applicability will end up limiting itself, because 
it will not always be possible to comply with these constraints. Reliable methodologies to recover and safely 
valorise old materials data will also need to be developed and applied. 
    
The "black-box" nature of many AI models makes it challenging to interpret how they arrive at certain predictions. 
Another issue is the danger of poor generalisation of AI when applied to new and never seen data, as a 
consequence of overfitting to specific datasets. Both these issues can be a serious barrier in many critical fields 
where the safety or reliability of costly components is involved because they both prevent safe extrapolation. It 
seems therefore reasonable to think that the widespread “brute force” approach that is currently being applied 
almost by default in most cases will be progressively replaced by “physics-informed” approaches, as the only 
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sensible way to partially remove the black-box nature of AI predictions, as well as to limit the possibility of 
overfitting to specific (and perhaps biased) datasets. Once again this will likely lead to a self-limitation or to a 
slowing down of the growth of applications of AI to materials science, due to the need to identify in each case the 
suitable physical inputs and to make sure they can be provided in a reasonable amount of time, so as to have 
sufficient data. This will be more or less feasible on a case-by-case basis. 
 
Finally, another serious problem is the computational and energy cost of AI. Training sophisticated AI models 
requires significant computational resources, which may not always be available, and the energy cost that goes 
with it. Were AI approaches widely applied without control, a self-limitation to the actual use of these techniques 
would appear once again at some point. 
 
Despite these limitations, but also based on the solutions they require, it can be expected that over the next 
decade and beyond there will be a race towards the as-wide-as-possible application, whenever feasible, of ML for 
the discovery and development of materials, as well as for the optimisation of fabrication techniques, by setting 
up so-called materials acceleration platforms, or adaptations of this approach to the specific cases of interest. 
In addition, ML will enter more and more forcefully the materials modelling world, initially mainly using brute force 
approaches, then more and more in combination with, or in support of, physics-based approaches. Finally, 
intelligent digital twins will become widespread tools for the lifetime management of materials and components 
in all energy devices that require optimisation, either for economic or safety reasons. The real, final and 
unambiguous, limiting factor to this foreseeably exponential growth will be the actual cost, in terms of resources 
and energy needed, of the widespread use of AI. Only in a world of almost inexhaustible, abundant, sustainable 
and cheap availability of energy can the use of AI proliferate freely. Interestingly, however, AI is expected to play 
a role in accelerating the path towards better energy materials, and thus to facilitate the development of a more 
efficient and sustainable energy landscape, thereby potentially self-supporting its own proliferation. 
 

Electrical grids 
 
Over the next decade, AI integration in power system control rooms will likely follow an AI-assistant interaction 
model, where AI-based systems provide ahead-of-time (e.g., day-ahead) or real-time recommendations of 
remedial actions to human operators who then take manual actions (Marot et al., 2022). This requires that AI 
models own meta-awareness, enabling them to recognise situations beyond their capabilities and seek human 
assistance (Endsley, 2023). 

Unlike traditional model-based tools, which suffer from slow computation limiting near real-time application and 
difficulty handling uncertainties or missing inputs, AI-based solutions offer rapid real-time computation and can 
create proxy models for simulation functions that struggle with large scenario volumes (Duchesne et al., 2020). In 
this context, foundation models (FM), leveraging the growing availability of open data and advanced synthetic data 
generation techniques, can facilitate the real-time resolution of optimisation problems like optimal power flow 
(Piloto et al., 2024). Other applications for FM are energy time series forecasting and simulation (Gao et al., 2024), 
and various open libraries, such as TimesFM (Das et al., 2023), are emerging. However, access to computational 
resources is crucial for training extremely large transformer models, and the associated carbon footprint is 
significant. Another interesting advance in generative AI is diffusion-based models, typically used in image and 
video generation, which can also be applied to uncertainty modelling of complex systems (e.g., power systems). A 
notable example from other domains is the use of diffusion models to generate weather ensembles (uncertainty 
trajectories) in the ECMWF's data-driven forecasting system, achieving forecasting skills comparable to the 
ECMWF's physically-based model. 
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However, model-based approaches and domain knowledge will always be valuable assets and can be combined 
with data-driven methods. Neuro-symbolic learning (Bhuyan et al., 2024) is a promising approach to leverage 
heuristics, expert knowledge, and physical equations of the system as an initial coarse solution that improves as 
data-driven learning progresses. This knowledge can be used to guide the learning process, reducing the required 
data and training time, and during deployment as an initial solution that the learned model can further refine, 
thereby enhancing performance in low-data scenarios. An example is the data-driven augmented expert system 
proposed by Bessa et al. (2024), which encodes expert rules in a domain-specific language and uses evolutionary 
strategies to evolve the symbolic model through data-driven interactions between the control agent and the 
environment, optimising power distribution between high-energy and high-power energy storage devices. 

AI and energy efficiency in industries 
 
A close look at the development of energy solutions over the last two decades immediately reveals how energy 
efficiency strategies have changed dramatically. The advent of increasingly reliable and efficient cogeneration 
plants around the 1990s, the use of photovoltaic panels whose efficiency has allowed them to be used for industrial 
purposes, and the realisation of solar and thermodynamic solar systems combined with ORC plants without 
neglecting energy production from grids (gas and electricity) have led to today's energy systems defined as 
polygeneration. 
 
As a result, we call today's energy systems ‘complex energy systems’, so the variables required for their energy 
optimisation increase, and the interconnections between them increase. The trade-off procedure also shows that 
their performance is often antagonistic to the proposed optimisation criterion. This implies that the variation of 
a variable does not always have the desired effect on the system. 
 
In modern industrial contexts, therefore, the optimisation of the ‘energies’ required for the production process is 
linked to the multiple variables to be controlled. Moreover, the target (economic and/or environmental) to be 
achieved is itself antagonistic to some of these variables. The analysis of trade-off criteria is the basis of the 
study of expert and/or artificial intelligence systems (hereafter AI).  
 
It follows from the above that a trade-off process, in a polygeneration system, could aim at maximising PES 
(Primary Energy Saving), reducing SPB (Simple Pay Back), the control of pollutant emissions, the reduction of 
CO2eqv emitted into the environment, maximisation of production, among others.  
 
The question must be asked as to which methods are most appropriate for achieving what is now indicated. In 
view of the interconnectedness of the variables, it is not possible to choose a single method, but it is necessary 
to operate with an ‘intelligent’ approach to work on a multi-variable system.  
 
AI may be an answer to what has been said so far. The genesis of an artificial intelligence system is, to a first 
approximation, an expert system, i.e. a knowledge-based system. This implies that each stage of an industrial 
process must be ‘discriminated’ to be able to artificially reproduce the performance relative to a given goal. The 
aim is to put in place an inductive or deductive process that enables the achievement of a trade-off, which, in our 
case, is relative to a complex energy system.  
 
It should also be emphasised that AI requires a preliminary analysis phase, which is much more complex than the 
subsequent ones, through which the user can recognise the level of independence (presence or absence of 
interconnections) and sensitivity (overall energy weight to be optimised) among the variables to achieve the set 
objective.  
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AI is based on rules, methods, and sensitivities (rule activation parameters) that are the substrate on which to 
develop learning and arrive at an algorithm, e.g., by means of a neural network, that can have machine learning 
(hereafter ML) capabilities and deep learning. 
 
The knowledge base is dictated by the sensor systems used to monitor the variables to be controlled. The data 
represent the discrete conclusions that the system reaches at the specific sampling time. The knowledge base is 
entrusted with the deductive rules that allow the system to follow logical reasoning on a particular operation: the 
base is updatable and allows the system to remain complete.  
 
Rules can be addressed by using advanced genetic algorithms such as MOGA II (Gimelli et al. 2019), in which a 
selected set of decision variables, (knowledge base), is given as input variables. Once the objective functions to 
be optimised have been chosen, the genetic algorithm repeats four distinct steps for each generation: for a given 
set of variables, defined as individual, the value of the objective function (fitness) is calculated, which allows the 
population to be sorted according to the Pareto front dominance criterion. Thanks to the sorting obtained, the 
best individuals can be selected, and a new population generated by means of recombination: each of these steps 
modifies the initial population and can be considered as an independent process. Typically, there is no single 
global solution, but rather a set of optimal solutions that are introduced into the knowledge base from time to 
time to assess their actual validity. 
 
(Maulin 2021) use a different genetic algorithm to optimise parameters for multi-agent systems, eventually 
simulating the results in computer development environments such as Matlab Simulink to test their operation.  
 
Objective functions, in cases where they are not directly determined by the minimisation and/or maximisation of 
simple control parameters, can also be obtained through the discrimination of multi-objective functions obtained 
with statistical regression models such as, for example, the stepwise method used for the characterisation of a 
production process. In this case, the authors' proposed idea is to discriminate the process to be able to apply 
optimisation algorithms.  
 
Traditional approaches are based on multi-predictors of regression (Furno & Biswas 2015): statistical approaches 
are a good option to avoid the burden associated with engineering approaches when observed/measured data 
are available and linear regression analysis has shown promising results due to reasonable accuracy and relatively 
simple implementation compared to other methods (ARIMA) (Amber et al. 2015, Oliveira & Oliveira 2018).  
 
In this context, the research work carried out by (Amoresano et al. 2023) proposes to increase the efficiency of 
two-phase heat exchange in vertical and horizontal pipes by adopting an accelerometer sensor to collect 
vibrational data within the hardware element. Statistical analysis made it possible to discriminate the vibrational 
pattern of the two-phase flow, which became the knowledge base of an expert system, the genesis of a non-
invasive Internet of Things (hereafter IoT), for the remote control of abnormal operating conditions that could lead 
to thermal stress in the pipes affected by the fluid flow and thus intervene on the efficiency of heat exchange. 
 
Turning to ML-based methods, the first approaches (Liu et al. 2020) which showed good results were based on 
Support Vector Regressors. (Giglio et al. 2023) propose an optimisation between photovoltaic modules and storage 
systems: dimensional variables are optimised so that through a study of real-time energy consumption, an ML 
module generates forecasts of demand in the near future. This led to a reduction in consumption without 
additional costs by implementing a control such that the strategy would exploit both photovoltaic production and 
the price of energy at the time of use. 
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(Agostinelli et al. 2021) promote the importance of digital twin approaches aimed at the realisation of an intelligent 
optimisation and automation system for energy management using a three-dimensional data model integrated 
with ML and AI. This approach is also followed by several other authors (Tao et al. 2019, Machorro-Cano et al. 2020, 
Liu et al. 2012). 
 
(Ahmad et al. 2021) emphasise how the importance of intelligent development can be identified in four macro 
fields of industrial development: simulation and improvement (the simulation of the energy system where ML and 
AI are well suited to optimisation through the use of artificial neural networks); investment and markets; 
sustainability and security to optimise energy infrastructure maintenance programmes and activities. Finally, 
Customer Oriented Services offer services to consumers to participate in the energy system more easily. 
 
According to (Shrouf et al. 2015), adopting smart systems achieved energy efficiency benefits by reducing machine 
downtime, and recording and reporting processes that do not add value to the finished product. This was done by 
using the load balancing method and considering variable energy prices as one of the main factors in defining 
machine scheduling. 
 
In addition, the authors, convinced of the possibility of making a production system efficient by means of AI 
systems, are currently studying an expert system that can keep the efficiency of individual energy machines in 
the industrial field high, e.g., by reducing on/off cycles and consequent tension overloads, evaluating the 
predictive energy demand on a statistical basis and/or modifying the production mix, with the possibility of storing 
any excess energy and making it available at a later date. 
 

Potential pitfalls and limitations when using AI 
There are many challenges to the application of machine learning and data-driven modelling in the energy sector 
including a lack of data and operability, skills and knowledge, and trustworthiness. 

The concept of trustworthiness of AI-enabled control of physical systems can be split into overall components 
(DNV-RP-0671 2023): 

• Technical and performance-related aspects such as accuracy, correctness, robustness to changing 
conditions or noise, bias and uncertainty awareness. 

• Explainability and interpretability cover the user’s ability to understand the model prediction. 
• Human oversight and interactions such as the possibility for humans to control and intervene in the 

system’s operation.  
• Safe and secure implementation ensuring that the system cannot lead to harmful situations and that 

outsiders cannot tamper with the model or the data. 
• Transparency and privacy ensuring accessibility of relevant information about the system to authorised, 

including clear labelling of the system being considered an AI. 
 
To address the first two components, it is crucial that machine learning is applied in connection with domain 
knowledge about the actual system. On the simplest level, this is a requirement to identify relevant relationships 
where a data-driven model will be beneficial, and which data can be used for training the model (Karpatne et al. 
2017). On more sophisticated levels, one can for example combine deep neural networks with partly known physical 
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models in the form of differential equations within the framework of Physics Informed Neural Networks (PINNs, 
Raissi et al. 2019). These are, however, only soft-constrained models which are not guaranteed to adhere to the 
laws of physics. Such guarantees can in some cases be implemented through Hamiltonian formulations 
(Greydanus et al. 2019), where basic physical properties such as energy are guaranteed to be conserved (or 
exchanged, Desai et al. 2021, Eidnes et al. 2023). An alternative for conserving relations between various properties 
in the system, e.g. an electric grid, is the application of graph neural networks (Battaglia et al. 2018, e.g. used in 
Sheikh-Mohamed 2023 for probabilistic power system operation). Also, temporal and spatial development can be 
coupled by choosing smart neural network structures (Williams et al. 2024). 
  
Combining or constraining the data-driven model with domain knowledge will, in many cases, lead to a more 
robust model with explainable behaviour and following the domain knowledge outside of the provided data range 
while exploiting the flexibility of the data-driven framework to account for factors that are often simplified in the 
existing models. Hence, it contributes to trustworthiness, but it is not a sufficient condition. 
 
Another important aspect is the transfer of knowledge. As the IEA states (Bennett & Spencer, 2024), identifying a 
new material for an energy application via a computer-based method is less than half of the innovation task. 
Prototyping, followed by commercialisation, mass manufacturing and widespread market uptake, can take years 
or even decades. 
 
Yet other AI-related tools in development could compress these timetables, too. Thus, digital twins can play a role. 
They have been used to optimise manufacturing for over a decade but are now being powered by AI and applied 
to innovation. However, difficulties also persist in applying AI to this phase of the innovation process. Currently, 
these tools are not all widely accessible to innovators in the scale-up stage and some digital gaps remain. 
 

Trustworthiness 
 
Trust among humans is based on mutual understanding and common values such that the behaviour of another 
person is within one’s expectations. It is only human that we consider an AI to be “trustworthy” if it yields intelligible 
results. Since putting (parts of) our energy systems, which are critical infrastructure, into the hands of AI clearly 
poses a “high risk”, AI in energy research may be classified accordingly by the EU AI Act. Hence, regulatory 
requirements for AI focus on transparency and accountability. This starts with FAIR and robust data (Wilkinson et 
al. 2016) and continues with the deployment and life cycle of explainable AI (Saranya et al. 2023). 

The requirements set by the AI Act on explainability are binding but remain abstract, which is why detailed, 
harmonised standards are the subject of current work (Walke et al. 2023). For example, the international 
standardisation committee ISO/IEC JTC1/SC 42 “Artificial Intelligence” aims to define objectives and approaches 
for explainability and interpretability of ML models and AI systems (ISO). However, there is currently no metric that 
takes all regulatory requirements into account (Sovrano et al. 2022), especially those of the energy sector. 

In any case, AI-based applications could make errors in judgment, act unpredictably, and be tricked by adversarial 
attacks. Thus, making AI trustworthy in a systematic way is highly important in critical infrastructure workflows 
like the power grid. On top of satisfying basic performance metrics, AI needs to satisfy requirements related to 
reliability and transparency and have ethical adherence and robustness from a social-technical perspective. For 
instance, the Horizon Europe AI4REALNET project follows a socio-technical system design about the joint 
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optimisation of humans, technology, and organisation to optimise the overall system’s performance. It defined 
a set of desiderata to build human trust in AI-based decision systems (Mussi et al., 2024), such as: 
 

• a careful allocation of functions between humans and AI is required to avoid negative impacts on human 
performance and to enable synergies between humans and AI that go beyond the capabilities of humans 
and AI alone; 

• while explainability is essential, it is only one form of providing automation transparency. Others are 
exploration, animation, mirroring, or intuitive interface design; 

• the analysis and design of AI, human-AI interaction, and human-AI collaboration require cognitive 
engineering methods that can model the decision-making process and requirements for function 
allocation resulting from human cognitive processes related to decision-making, learning, trust, and 
motivation. 

Furthermore, the Assessment List for Trustworthy AI (ALTAI) framework1 created by the High-Level Expert Group 
on Artificial Intelligence (AI HLEG) appointed by the European Commission was used to identify the relevant risks 
and ethical concerns. Noteworthily, the ALTAI has been conceived as an assessment instrument for ex-post self-
assessment of AI systems. AI4REALNET proactively uses its structure to perform an ex-ante assessment of the 
use case definition. This allowed to: 

• identify risks and ethical issues particularly relevant to the considered AI use cases, 
• define use case requirements to be fulfilled by the AI solutions developed, 
• and to develop suitable metrics to validate that these requirements are appropriate and sufficient to 

mitigate the identified risks and ethical concerns. 

For further reading, the reader is referred to the DNV recommended practice (DNV-RP-0671 2023) as well as 
intermediate results from the THEMIS 5.02 and TEA-DT3 projects. 

 

The human-centric approach: Harnessing AI in social 
research and the benefits for the energy sector 
The energy sector is undergoing a significant transformation, with Artificial Intelligence playing an increasingly 
crucial role in areas like grid management, energy forecasting, and optimising energy consumption (Ahmad et al. 
2021). The growing decentralisation of the energy system—through the introduction of collective models, energy 
sharing, and localised production—makes human-centric participation more and more important (Pogmore & 
Wheeler 2023). Different households exhibit unique dynamics and behaviours that require careful coordination to 
maximise utility and optimise energy consumption. The integration of AI into social science offers a powerful 
solution to address these challenges. By enabling advanced data analysis capabilities, AI can create personalised 

 
 
 
1 https://futurium.ec.europa.eu/en/european-ai-alliance/pages/welcome-altai-portal 
2 https://www.themis-trust.eu/results  
3 https://www.turing.ac.uk/research/research-projects/trustworthy-and-ethical-assurance-digital-twins-tea-dt  

https://futurium.ec.europa.eu/en/european-ai-alliance/pages/welcome-altai-portal
https://www.themis-trust.eu/results
https://www.turing.ac.uk/research/research-projects/trustworthy-and-ethical-assurance-digital-twins-tea-dt
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tools and simulations of system interactions. The latest is particularly true due to the constant increase in 
computational power that facilitates complex system modelling (Hwang 2018). This allows for predicting energy 
consumption patterns and optimising energy use across the entire system. Moreover, AI's proficiency in natural 
language processing facilitates smoother interactions with humans, making it easier to incorporate human input 
into energy management systems. AI also serves as a catalyst for centralising human involvement in production 
systems, paving the way for Industry 5.0 (Alves et al. 2023), where human expertise and advanced technologies 
work hand in hand to create more efficient and sustainable energy solutions. 

In this rapidly evolving context, adopting a human-centric approach supported by AI is crucial for effectively 
managing and optimising modern energy systems. This approach ensures that these systems are not only 
technologically advanced but also closely aligned with the needs and behaviours of the people they serve. 

As part of this communication, we highlight up to four AI-enhanced capabilities for social science research that 
make user-centric approaches in the energy system more actionable. 

• Tailoring: Data processing capabilities enabled by AI and machine learning modelling enhance the 
generation of user profiles, essential for creating archetypical categories for personalised intervention 
programmes and energy-saving strategies, as well as maximising grid flexibility based on energy 
consumption patterns (Gržanić et al. 2022). AI and machine learning techniques streamline analysis, 
allowing faster and more efficient profile creation and updates with new data. This is crucial for 
developing dynamic interventions and strategies that evolve with user needs, tailored to the specific 
characteristics of different user groups (Méndez et al. 2023), including those facing energy poverty (Primc 
et al. 2019). Furthermore, AI and machine learning facilitate the analysis of adoption capabilities for new 
distributed energy resources (DER) such as photovoltaic systems (PV)  (Alipour et al. 2021), electric 
vehicles (EV) (Lagomarsino et al. 2022), and heat pumps (HP) (Oikonomou et al. 2022). They can also aid 
in understanding market dynamics, including dynamic pricing based on consumption patterns (Gržanić 
et al. 2022).  

• Generation of expert models: Traditional AI systems, while powerful, can sometimes lack the human 
context and understanding crucial for complex domains like the energy sector. This is where AI excels at 
generating "expert models", bridging the gap by integrating valuable human knowledge with AI's 
processing capabilities (e.g., Human-in-the-loop machine learning). Expert models leverage human 
expertise to capture the intricate dynamics of energy systems, including identifying barriers and 
developing strategies to promote proper energy use and local generation. These models simulate various 
scenarios to assess the potential impact of different policies on user behaviour and system performance, 
employing a "what-if" approach to test solutions for problems with uncertainty or vagueness (Suganthi 
et al. 2015). The choice of the expert model tool depends on the specific problem being addressed 
(Frangopoulos 2009). For instance, rule-based systems are ideal for well-defined problems with clear 
rules or conditions, often used for diagnostics and basic decision-making tasks; fuzzy logic systems are 
suited for situations involving uncertainty or vagueness, mimicking human reasoning for flexible 
decision-making; knowledge-based systems tackle problems requiring complex reasoning and extensive 
codified knowledge; and neural network systems are powerful for handling large datasets with intricate 
patterns, useful when problems involve noisy, unstructured data or lack explicit rules. 
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• System modelling: AI is fundamentally reshaping how we model energy systems. By crafting virtual 
replicas in controlled environments, AI tools unlock the power of agent-based modelling. This approach 
goes beyond traditional methods by simulating nuanced, intricate interactions between social and 
environmental components. These interactions can be complex, non-linear, and dynamic, mirroring the 
real world (Polhill et al. 2016). Furthermore, AI allows us to integrate existing knowledge about the system 
into the model (Davis et al. 2019). This is achieved through simulations that factor in the behaviour of 
individual actors within the system, leading to more accurate and realistic outcomes. The model's ability 
to represent diverse actors (households, businesses, policymakers) and their interactions becomes 
crucial for understanding how the entire system might change (Polhill et al. 2016). Policymakers, among 
other actors, can leverage these AI-powered virtual testing grounds to validate new strategies, optimise 
them for public acceptance before real-world implementation, and pinpoint key leverage points for 
interventions that can promote positive systemic change within the energy sector. 

• Diffusion maps: Machine learning techniques excel at using AI to generalise the characteristics of diverse 
entities, such as households, enterprises, or industries, based on limited real-world datasets. This 
capability enables the extrapolation of existing user profiles that are statistically representative of a 
broader geographical area, allowing for the scaling up of insights without requiring extensive new data 
collection (Polhill et al. 2012). By leveraging existing model outputs, this approach offers several 
advantages, including privacy protection through the use of synthetic data, scalability, speed in 
generating profiles, and actionable insights for energy stakeholders. These insights can identify areas 
with high potential for distributed energy resources, facilitate collaborative programmes between 
providers and consumers, and develop strategies to encourage more efficient energy use (Alipour et al. 
2018). This method can also be used to identify regions most affected by energy poverty, enabling 
targeted interventions to assist vulnerable populations (Mashhoodi 2019). 

Several benefits can be derived from the use of these AI-boosted techniques in energy systems: 

• Empowering consumers: Empowered consumers benefit from personalised energy-saving strategies 
that align with their lifestyles and preferences. This approach helps them reduce energy costs, enhance 
comfort, and actively participate in managing their energy usage, leading to greater overall satisfaction 
and agency. 

• Ensuring transparency and trust: Energy systems that are transparent and trustworthy infuse confidence 
among consumers and businesses. Through clear communication and reliable practices, such as 
explanatory interactive learning (Teso & Kersting 2019), users and stakeholders can make informed 
decisions, provide feedback, and feel secure in managing their energy resources, thereby nurturing long-
term trust. 

• Enabling collaborative models: This requires fostering partnerships and cooperation among stakeholders 
to optimise energy management, reduce costs, enhance innovation, and optimise resource use through 
collective efforts and shared resources. 

• Generating grid resilience: Resilient energy grids provide reliable and uninterrupted energy supply, even 
during disruptions. This resilience reduces downtime, supports economic stability, and ensures 
continuous service for consumers and businesses, enhancing overall reliability and energy security. 
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• Facilitating equitable energy access: Equitable access to energy resources ensures that all communities 
have reliable and affordable energy options. Addressing disparities and promoting inclusive energy 
policies are essential steps toward achieving this goal. 

• Promoting energy system efficiency: Efficient energy systems optimise resource usage by analysing 
consumption patterns and encouraging responsible practices to lower costs, minimise environmental 
impact, and improve production and distribution efficiency. 

• Improved decision making for policy optimisation: Data-driven decision-making improves policy 
outcomes and resource allocation, enabling policymakers to develop effective strategies that meet 
targeted goals, such as sustainability and economic benefits, more efficiently. 

Table 1: Table summarising the benefits enabled by different AI capabilities in the research domain for energy systems from social 
sciences. The plus (+) symbols are arbitrarily used by the author to indicate the varying levels of impact of each AI capability in 

generating benefits. 

AI capabilities 
for User-
centricity 

Tailoring Expert models System 
modelling 

Diffusion maps 

Empowering 
end-consumers 

+++ + ++ ++ 

Ensuring 
transparency 
and trust 

+ ++ + ++ 

Enabling 
collaborative 
models 

+++ ++ +++ ++ 

Generating grid 
resilience 

+ ++ +++ ++ 

Facilitating 
equitable 
energy access 

+++ ++ +++ ++ 

Energy system 
efficiency 

++ ++ ++ +++ 

Improved 
decision making 

++ +++ +++ +++ 

 

Additionally to all of the previous, the use of generative AI tools emerges as a new option that society is quickly 
adopting and profiting from. Proven a wide set of new capabilities already described, they also present new 
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challenges that must be properly approached, in particular, the provision of training capacities for reducing 
the learning process for their correct exploitation and the social awareness of the likelihood that the results of 
the generative AI present does not necessarily mean demonstrated truth and trustworthiness. In this context, 
initiatives such as the EC’s Pact for skills can be cornerstone. 

In conclusion, the integration of AI into the energy sector, particularly through the lens of social science, offers 
transformative capabilities that are essential for managing and optimising modern energy systems. AI enhances 
user-centric approaches by tailoring personalised energy strategies, generating expert models that combine 
human knowledge with data analysis, creating sophisticated system models, and developing diffusion maps that 
generalise insights across diverse populations. There will be difficulties to overcome, but this human-centric 
approach is pivotal in navigating the complexities of the evolving energy landscape, paving the way for a future 
where advanced technologies and human expertise work hand in hand to achieve greater social and 
environmental benefits. 

For further insights on this topic, a McKinsey expert discussion can be consulted in the references section. 
 

AI in the scope of EERA: some success stories 
 

Renewable energy forecasting 
 
The model chain for renewable energy sources (RES) forecasting is well-established in industrial applications and 
is currently available as a commercial product. This product typically integrates a numerical weather prediction 
(NWP) model, which forms the physical layer of the forecasting model chain, with post-processing and a machine 
learning model (AI layer) to convert weather variables into power predictions. According to a recent survey 
conducted by CIGRE Working Group C2.42 involving approximately 50 system operators, AI is already used in 
operational RES forecasting systems (Cremer et al., 2024). This demonstrates the successful application of AI in 
system operations, and it is being integrated into various power system operation functions and RES market 
bidding activities. These include procuring balancing services, week-ahead operational planning, and defining 
remedial actions for extreme weather events (Fox et al., 2021). 

In the physical layer, AI has been exploited for data assimilation between the physical model of the atmosphere 
and data collected from assets like wind turbines, with some improvements in predictability in the first 3-4 hours 
(Shaw et al., 2019). An alternative is purely data-driven weather models, where two notable examples built using 
graph neural networks are GraphCast (from Google DeepMind) and AIFS (from ECWMF). In the AI layer, tree-based 
methods like gradient-boosting trees and random forests have outperformed competitive approaches based on 
deep neural networks and variants. This has been shown in benchmark competitions, such as the Global Energy 
Forecasting Competition 2014, and it was recently shown again in an operational competition promoted by the 
IEEE Working Group on Energy Forecasting and Analytics that benchmarked in a real-environment forecasting 
system developed by industry and academia (Browell et al., 2023). 

Bioenergy 
 
Most of today’s biogas power plants, which are commonly part of an agricultural business or consortium of some 
kind, produce energy and heat in a continuous mode of operation. At the same time, differential and algebraic 
equation-based models for anaerobic digestion processes inside a plant’s reactor have been found unsuitable for 
industrial applications due to their idealisation. However, AI techniques can model anaerobic digestion in full-
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scale and yield accurate estimates on the biomethane potentials even for industrial applications (Meola et al. 
2023a). This opens up the possibility for both compensating more irregular renewable energy sources and 
optimising energy and heat production with respect to demand and/or market prices (Mauky 2018). A key challenge 
is the availability and interoperability of data, which is expansive to generate in experiments and with high 
variance due to the impurity of the used biomass substrates; e.g., straw and liquid manure. 

Materials 
 
It is well known that materials are an essential element of any innovation in the energy sector. However, 
discovering a new material that is both suitable for final applications and sustainable typically takes over ten 
years of experimentation and significant investment. 
 
Enormous quantities of experimental data are being generated on the properties of these materials, stored in 
large thematic databases and scientific papers. Relating a material's structure to its function needs to be 
accelerated, as the search space is vast. Many materials are still found empirically, with candidates making and 
testing a few samples at a time. This process is subject to human bias, as researchers often focus on a few 
combinations of elements they find interesting. 
 
To address this, computational methods are being developed to automatically generate structures and assess 
their electronic features and other properties. Supercomputers can predict the properties of all known materials 
and solve very complex material models. However, translating this data into industrial and commercial 
applications is still a challenge. 
 
Artificial intelligence (AI) and machine learning (ML) techniques can significantly speed up the discovery of energy 
materials by finding patterns in data sets. AI has already been used to predict the results of quantum simulations, 
identifying potential molecules and materials for flow batteries, organic light-emitting diodes, organic 
photovoltaic cells, and carbon dioxide conversion catalysts. These algorithms can predict results in minutes, 
compared to the hundreds of hours needed for traditional simulations. 
 
Despite this progress, challenges remain. There is no universal representation for encoding materials, and 
different applications require different properties, such as elemental composition, crystal structure, and 
conductivity. Well-curated experimental data on materials are rare, and computational tests often rely on 
assumptions and models that may not accurately reflect experimental conditions. 
 
To overcome these challenges, the machine-learning and energy-sciences communities should collaborate more 
closely to exploit AI and ML techniques. AI can analyse large amounts of data and predict the properties of new 
materials, reducing the time and costs associated with traditional experimental methods. By harnessing AI-driven 
simulations and data analysis, researchers can identify promising materials more efficiently, cover the multiscale 
design from atoms to real materials, and optimise their properties for specific energy applications while ensuring 
sustainability. This paradigm shift not only increases the pace of materials discovery but also opens up new 
possibilities for creating advanced materials that meet the evolving needs of the energy sector (Aspuru-Guzik & 
Persson 2018). 
 
To progress in the field of accelerated materials discovery, materials scientists should organise their data into 
curated, standardised, and machine-readable forms. Moreover, scientists should collaborate to develop materials 
acceleration platforms (MAPs). MAPs are platforms where experimental and computational laboratories work 
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together in an automated manner (the reader can consult the current developments made by the COST Action 
EU-MACE). 
 

The energy consumption that AI produces 
 

Which problem are we talking about 
 
The energy cost of AI is significant, with data centres becoming increasingly energy-intensive. According to the 
International Energy Agency (IEA), data centres worldwide currently account for between 1% and 1.5% of global 
electricity consumption. The scientific community agrees that the rapid adoption of new technologies will 
substantially increase energy use in this sector. 
 
Recent studies (Luccioni et al. 2024) indicate that handling hundreds of millions of ChatGPT queries can consume 
around 1 gigawatt-hour per day, equating to the energy usage of approximately 33,000 households. Training a 
single chatbot can use as much electricity as an entire neighbourhood consumes in a year. By comparison, 
traditional cloud computing workloads, such as online services, databases, and video streaming, are far less 
computationally demanding and require significantly less memory. 
 
Among generative AI tasks, image generation is the most energy-intensive. Creating a single image using an AI 
model consumes the same amount of energy as fully charging a smartphone. Generating 1,000 images with a 
powerful AI model like Stable Diffusion XL produces as much carbon dioxide as driving a petrol-powered car for 
6.6 km. In contrast, text generation is less energy-intensive; generating text 1,000 times uses only 16% of a 
smartphone's full charge. Each AI-generated prompt, multiplied by 1,000, results in CO2 emissions equivalent to 
driving 1 meter. 
 
Studies have shown that large generative models, used for tasks such as question answering, text generation, 
image classification, subtitling, and image generation, require significantly more energy than smaller, task-
specific AI models. For instance, using a generative model to rank film reviews by positivity consumes about 30 
times more energy than an optimised model designed for that specific task. The higher energy consumption of 
generative AI models is due to their multifunctional nature, handling multiple tasks like generating, classifying, 
and summarising text simultaneously, rather than focusing on a single task. 
 
The rise of generative AI has led major technology companies to integrate powerful AI models into a wide range 
of products, from email to word processing, as seen with Microsoft's Copilot in Bing and the Office suite. These 
generative AI models are now used millions, if not billions, of times daily. Moving forward, a more sustainable 
approach involves integrating specialised, less energy-intensive models into IT services, which can often perform 
better for specific applications. A step forward in this context might be DeepSeek, which claims to have reduced 
the energy consumption ten time providing similar results. Independently of the correctness of their solution in 
comparison to other generative AI models, DeepSeek has demonstrated that working on improving the algorithm 
part of the LLMs can reduce the energy consumption that AI produces. 
 

Data science and AI for energy consumption in HPC infrastructure 
 
Data centres (DCs) are the backbone of the ever-increasing need for reliable and scalable data processing, storage, 
and networking capabilities to support businesses and individual users. This is a direct dependence on computing 
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power and chips performance that cannot be avoided. With the rapid growth in demand for digital services and 
associated applications, data centres have become ubiquitous, which underpins the ever-growing digitisation. In 
the meantime, they pose significant threats in terms of both energy costs and the associated carbon emissions 
(Vafamehr & Khodayar 2018). A new era has come with the energy consumption reduction of AI solutions like 
DeepSeek, but additional actions can be performed from the hardware side. Hence, the new developments that 
USA and China may approach to create new more efficient chips and processors from the energy side can result 
in a reduction in the emission of CO2. 
 
The current global energy consumption of data centres is estimated to be approximately 3%. According to (Andrae 
2015) and the late update in 2019 (Andrae 2019), given the rapid pace of digitisation, if necessary actions are not 
taken, data centres are expected to consume 21% of the global demand by 2030. However, if the necessary actions 
are taken, this figure can be reduced to 8%. Regarding environmental issues, DCs are estimated to contribute 
0.3% of global carbon emissions annually (Jones et al. 2018) and are expected to increase to 8% by 2030 (Cao et 
al. 2022).  
 
Optimising the energy efficiency of DC and in particular the class of High-Performance Computing (HPC) cluster 
is therefore a major concern. Demand for computing resources and thus energy demand for HPC is steadily 
increasing while the energy market transforms to renewable energy and is facing significant price increases. This 
could lead to significant operational costs, power security impacts in the energy ecosystem, and environmental 
threats. Integrating the IoT, sensors, and intelligent devices has significantly contributed to generating vast 
operational management data from various aspects of the data centre industry. Effectively modelling and 
processing this data could improve energy efficiency, ensure reliability, reduce operating costs, and sustainably 
manage data centres (Grishina et al. 2020). 
 
However, prior heuristics, statistical, and engineering methods could not be effective for modelling and simulating 
this data. Meanwhile, a Data Science approach (Grishina et al. 2020. Grishina et al. 2022) ensures a better 
interpretation of energy consumption data (energy-thermal-computational data) to modelling Data Centre Energy 
Efficiency. Indeed, the data science approach (from raw data to decision making) uses several different 
techniques - such as machine learning, data assimilation, AI, etc.- to obtain value from the stored and collected 
data in order to provide an accurate picture of the DC consumption. Moreover, data science techniques (e.g. 
machine learning algorithms, data assimilation) can be used to understand the DC' users working style and predict 
the DC' thermal and energy weight. 
 
Consequently, a complex analysis to optimise energy consumption (e.g., air cooling and computer systems) could 
be done. Useful analysis and utilisation of energy monitoring data are a key factor in the success of many business 
and service domains, including DC. The application of advanced data science techniques for energy data in DC 
has many benefits and challenges, including the step forward in terms of energy efficiency in DC framework and 
metrics as well as infrastructure management, which includes the reliance on cloud computing services, 
networks, and IoT technologies. 
 
A structured framework of DC' energy consumption, based on energy data analytics could be used to quantify 
energy efficiency; it is necessary to understand the opportunities for improving energy efficiency in DCs. 
Furthermore, taking into account the introduction of HPC of the Graphics Processing Units (GPUs), the aim is also 
to investigate the energy efficiency issue of GPUs. GPUs are now considered serious contenders for high-
performance computing solutions and an excellent tool for massively parallel computing. The use of GPUs in DC 
environments brought about a transformation in data processing and analysis for many enterprises. GPUs have 
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also proven their worth as job accelerators and Virtual Desktop Infrastructure (VDI) is a noteworthy example. 
This may lead to power supply and thermal dissipation problems in computing centres. 
 
Within the Open Lab (virtual and/or physic environment within research and industrial partners cooperate) namely 
“Towards sustainable and energy efficient using Data Science implementations in HPC Data Centre ” of PNRR-
Rome Technopole, a collection of data science (e.g., data mining, machine learning, data assimilation, AI, ....) has 
been employed for the prediction analysis of energy consumption, thermal characteristics based on actual 
temperatures in a real ENEA-DC with CPUs and GPUs cluster rather than considering device setpoints or guidelines. 
In addition to that, it aims to understand and model user resource consumption behavior based on historical data 
to predict future consumption of resources: CPU, memory, and network. 
 
This research within Open Lab aims to bring about improvement of DC energy efficiency for sustainable 
operations. Moreover, it will probe how and where modern GPUs are using energy during various computations, 
schematically manage the thermal difference between regular CPUs and GPUs, and then discuss different 
strategies and proposals to increase energy efficiency in the GPU context. So, a complex analysis to optimise 
energy consumption (e.g., air cooling and computer systems) could also be done with the help of a valuable thermal 
imaging camera for detecting critical points at a thermal level. Proper analysis and utilisation of energy monitoring 
data are essential to success in many business and service domains, including DC. 
 
The application of advanced data analysis for energy data in DC presents many advantages and challenges, 
including the step forward in terms of energy efficiency in the framework and the management of thermal 
parameters that, managed optimally, can optimise energy consumption allowing a longer life cycle of the 
hardware. A structured framework of DC energy consumption based on energy data science could be used to 
quantify energy and thermal efficiency; it is necessary to understand the opportunities for improving efficiency 
in DCs with a mix of CPUs and GPUs. Using GPUs in DC environments brought about a revolution in data processing 
and analysis for many enterprises.   
 
A significant challenge in the topic of energy efficiency data centre is provided by the digital twin approach 
(Chinnici et al. 2023). Indeed, a digital twin design for analysing and reducing energy consumption and also 
computing resources optimisation of a real-world HPC system is mandatory. Within the Open Lab namely “Digital 
Twin data centre” of PNRR-Rome Technopole, a digital twin is based on the HPC cluster at the ENEA HPC cluster 
namely CRESCO cluster in R.C Portici, Italy. The digital twin receives information from multiple internal and external 
data sources to cover the different optimisation opportunities. The digital twin also consists of a scheduling 
simulation framework that uses the data from the digital twin and real-world job traces to test the influence of 
the different parameters on the HPC cluster.  
 
An analytical reporting system has been developed, "Analytical Dashboard", for the operation and energy 
management based on a data-driven AI-based framework for modelling data centre efficiency that learns from 
actual operational data. A dashboard will allow the management, monitoring, and (near) real-time visualisation of 
data related to real data centre using blockchain technology. Technology solution to implement the analytical 
dashboard: the hardware and software resources will be modelled as a digital twin. Blockchain and tokenisation 
technologies will be used to allocate computing resources (HPC loads) to optimise or efficiently distribute 
infrastructure energy consumption across various activities. This approach is exhaustively trained and tested 
using real operational data obtained from the ENEA-CRESCO6 cluster high-performance computing (HPC) data 
centre. 
 
The digital twin approach is a promising method to provide extra data sets for training. Specifically, digital twins 
can not only provide physical characteristics of the DC system but also dynamically adjust scene parameters 
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through programming (Kostenko et al. 2020). In this way, many samples are obtained to assist model training and 
improve fault tolerance. In Gartner's opinion, digital twins will proliferate industries, and when combined with AI 
technology, digital twins will enable open, connected, and coordinated intelligent spaces (Gartner 2015).  
 
The seamless connection and real-time data exchange between the physical and digital twin allow for conducting 
real-time energy consumption simulation and energy-saving control. Therefore, the combination of AI technology 
and blockchain technology to build the digital twin is conducive to researching adaptive, intelligent, and fault-
tolerant DCs energy saving schemes in a more flexible and dynamic way.  
 

A future strategy 
 
The ownership and control of high-performance computing (HPC) infrastructure are indeed critical factors in the 
development and advancement of AI models. Indeed, training advanced AI models, particularly large language 
models and generative models, requires substantial computational power. HPC infrastructure provides the 
necessary resources for parallel processing, high-speed data handling, and efficient memory usage, which are 
crucial for training these models effectively. 

Thus, organisations with access to advanced HPC infrastructure are the only ones that can push the boundaries 
of AI research and development. Indeed, they can experiment with more complex models, larger datasets, and 
innovative algorithms, giving them a competitive edge in the AI sector. 

The technological and economic competition has reached a high level of speed, and HPC infrastructure can 
significantly reduce the time required to train AI models. Faster training times mean quicker iterations, allowing 
for rapid development and deployment of AI solutions. In the past HPC infrastructures were considered very 
expensive to build and maintain, now their use can be more cost-effective for large-scale AI operations in the long 
run. Companies that own and operate their HPC infrastructure can avoid the high costs associated with cloud-
based computing services for intensive AI workloads. Control over HPC infrastructure provides a strategic 
advantage. Companies can prioritise their resources for their projects, ensure data security, and maintain 
proprietary technologies without relying on third-party providers. 

This technological race to possess the fastest and most powerful HPC infrastructure has overshadowed research 
activities in the field of Big Data and HPC and such a race can even speed up with the launching of new generative 
AI solutions that could reduce the dominance of companies such as NVIDIA. In fact, we are witnessing a race to 
build huge supercomputing infrastructures using microprocessors and technological solutions already available 
on the market. The consequence of this is that almost all HPC infrastructures are equipped with a huge number 
of graphics processors from the same company. This industry has effectively monopolised the microprocessor 
market and we depend on it to use AI models. Research in the HPC and Big Data sector, and in particular the 
development of more specialised and efficient AI models, needs to be given a new lease of life, as recently 
demonstrated. The energy sector is therefore called upon to think carefully about future developments in order 
to plan for the development of infrastructures and models that are of most interest to it and on which to focus in 
the coming years. 
 
Last but not least, data centres (as many other critical facilities) consume energy under a 24x7 scenario, so the 
clean energy transition must also provide a new energy generation in which a continuous and reliable provision 
of power is ensured. 
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For a systematic comparison of the ongoing inference cost of various categories of ML systems, covering both 
task-specific (i.e. fine-tuned models that carry out a single task) and ‘general-purpose’ models, (i.e. those trained 
for multiple tasks), the reader can consult (Luccioni et al., 2024). 

Conclusions 
 
Not only the energy sector, but the whole society is moving to a digital scenario in which ICT technologies are the 
cornerstone. In particular, the impact of AI applications in the energy sector more broadly needs to be fully 
assessed. Promising examples are of utmost importance as they are accelerating breakthroughs in clean energy 
innovation, managing the electricity system to facilitate more renewables and easier decision-making processes, 
and deploying AI to enhance the profitability and speed of electrification programmes in developing economies. 
These applications could potentially transform energy systems, but today, their impacts, enabling conditions and 
scalability are not well known.   
 
Concerning the electricity market, the European Network of Electricity Transmission System Operators (ENTSO-E) 
states that an AI approach can be implemented in ‘‘vast swathes of TSOs’ core business to adapt a large amount 
of data, providing support for decision-making either from a system operation perspective or within corporate 
development and business administration’'.  
 
In ENTSO-E’s view, the main advantages and useful applications of AI for a TSO’s core business might be 
established in one of the following: using deep learning (DL) in drones for maintaining overhead lines; applying 
digital twins (virtual representations) of high-voltage equipment of high importance; introducing software in 
controlling and accounting to improve administration performance within an organisation; and using optimisation 
code for automated energy trading (here, blockchain capabilities could play an important role, too). For the sake 
of completion, ENTSO-E categorises AI as having a Technology Readiness Level of 6 (i.e. demonstration stage). 
 
On the other hand, both transmission and distribution system operators (TSOs and DSOs) must also consider the 
risks they may be taking in using AI from external suppliers, which needs to be addressed in terms of 
cybersecurity.  
 
With respect to the digital gap, it is facing a two-fold challenge. On the one hand, there is a disconnect between 
the rapid pace at which AI is advancing and the understandably conservative pace at which new technologies are 
adopted by key energy industry actors; on the other, all the possibilities that AI is providing should be properly 
adopted and exploited by the final users. 
 
Thus, the design and implementation of AI need to be conducted by multidisciplinary teams of professionals who 
combine a deep understanding of the AI algorithms, the domain of application of the systems they work on, and 
the integration of user-friendly interfaces for the final users. This expertise, which is in short supply and 
consequently a training challenge, is essential to mitigate risks associated with poor data quality, the outcomes 
derived from its analysis, and the societal digital gap. In this latter scenario, initiatives such as the Large-scale 
Skills Partnership on the ‘Digitalisation of the Energy System’ can support the achievement of such a goal.  
 
Standards and recommended practices are also vital for risk management and to enable controlled technology 
adoption to allow industries to progress by building trust and efficiency. In this sense, DNV has invested 
extensively since 2021 to develop recommended practices providing guidance for organisations and industries 
including energy throughout the digitalisation journey (see DNV-RP-0671 ‘AI-enabled systems assurance’ for a 
deeper detail).  
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Regulatory and trust issues may mean a few high-risk applications of AI in the energy industry in the short term. 
However, it is likely that the next two to five years will bring accelerated deployment of AI in smart grid monitoring 
and management, enhancing energy production, efficiency and reliability. AI-driven predictive maintenance in 
renewable energy installations such as wind and solar farms will become more prevalent, reducing downtime and 
optimising energy production.  
 
In addition, AI applications in demand-response systems will become more sophisticated, enabling better 
balancing of energy supply and demand in an almost fully sensorised environment.  
 
In conclusion, in the energy sector, the progression from analog to digitalisation, then machine learning and deep 
learning, and now generative AI,  is a continuous, incremental journey. It will certainly make some use of generative 
AI for some technical and sales purposes probably, but is more focused on machine and deep learning in an 
industrial operations context for the near future. On the other side, the AI race is now totally different, with new 
processors to come and new algorithms to be more efficient. Even when the dependence on the computing 
resources remain, the possibility of dramatically reducing the exploitation of huge farms of GPUs for obtaining 
valid results can positively impact Europe, which traditionally has provided very good software solutions rather 
than hardware ones. This fact does not mean that the building of new processors could be forgotten, but the 
landscape of relying on new algorithm advances for integrating AI solutions in the energy sector under a human-
centric approach should be strongly supported. 
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