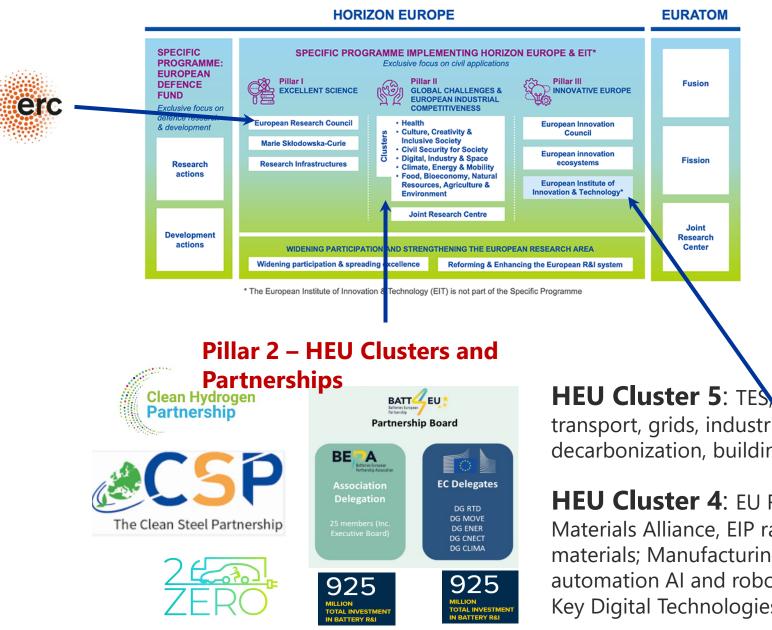
### European Innovation Council

### Backing visionary entrepreneurs

Marco Pantaleo Program manager, European Innovation Counci

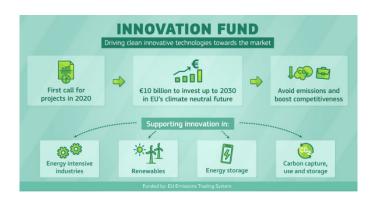
EERA Workshop on applications for thermal energy storage in industrial sector Utrecht 7<sup>th</sup> Nov 2023






### Outline

- Horizon EU and European Innovation Council
- Research and innovation priorities for energy transition
- Innovation trends in energy storage
- Funding opportunities: EIC pathfinder and accelerator




#### EU instruments to support R&I in energy storage





#### **Other EU public funding options**







transport, grids, industria decarbonization, buildings.

#### HEU Cluster 4: EU Raw

Materials Alliance, EIP raw materials; Manufacturing; automation AI and robotics; Key Digital Technologies



3

### Institutionalised European Partnerships in the portfolio

#### PILLAR II - Global challenges & European industrial competitiveness

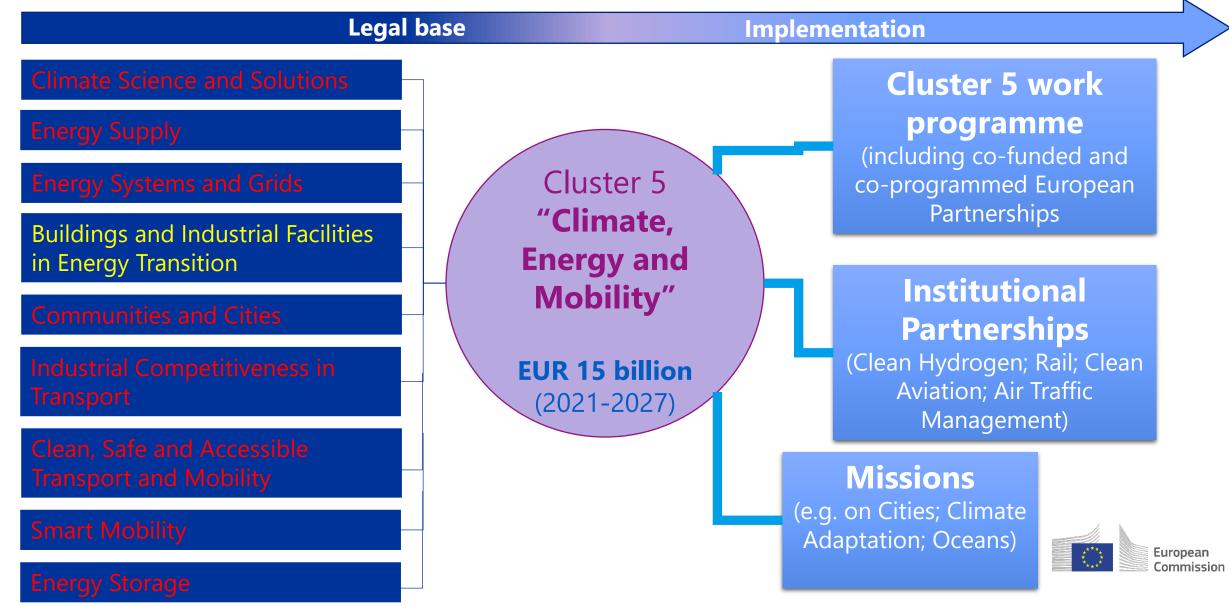
#### PILLAR III - Innovative Europe

| CLUSTER 1: Health                          | CLUSTER 4: Digital, Industry<br>& Space | CLUSTER 5: Climate, Energy<br>& Mobility | CLUSTER 6: Food,<br>Bioeconomy, Agriculture,        | EIT                         | SUPPORT TO INNOVATION<br>ECOSYSTEMS |  |
|--------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------------|-----------------------------|-------------------------------------|--|
| Innovative Health Initiative               | Key Digital Technologies                | Clean Hydrogen                           | Circular Bio-based Europe                           | InnoEnergy                  | Innovative SMEs                     |  |
| Global Health Partnership                  | Smart Networks &<br>Services            | Clean Aviation                           | Rescuing Biodiversity to<br>Safeguard Life on Earth | Climate                     |                                     |  |
| Transformation of health systems           | High Performance                        | Single European Sky<br>ATM Research 3    | Climate Neutral,                                    | Digital                     |                                     |  |
| Chemicals risk                             | Computing                               | Europe's Rail                            | Sustainable & Productive<br>Blue Economy            | Food                        |                                     |  |
| assessment                                 | European Metrology<br>(Art. 185)        | Connected and Automated                  | Water4All                                           | Health                      |                                     |  |
| ERA for Health                             | Al-Data-Robotics                        | Mobility (CCAM)                          | Animal Health & Welfare*                            | Raw Materials               |                                     |  |
| Rare diseases*                             | Photonics                               | Batteries                                | Accelerating Farming                                | Manufacturing               |                                     |  |
| One-Health Anti Microbial<br>Resistance*   | Made in Europe                          | Zero-emission<br>waterborne transport    | Systems Transitions*                                | Urban Mobility              |                                     |  |
| Personalised Medicine*                     | Clean steel – low-carbon                | Zero-emission road                       | Agriculture of Data*                                | Cultural and Creative       |                                     |  |
| Pandemic Preparedness*<br>Co-funded or co- | steelmaking                             | transport                                | Safe & Sustainable Food<br>System*                  | Industries                  |                                     |  |
| programmed                                 | Processes4Planet                        | Built4People                             |                                                     | CROSS-PILLARS II AND III    |                                     |  |
|                                            | Global competitive space<br>systems**   |                                          |                                                     | European Open Science Cloud |                                     |  |
| Institutionalised Partnerships (Ar         | t 185/7)                                | Driving Urban Transitions                |                                                     |                             |                                     |  |

Institutionalised Partnerships (Art 185/7)

Institutionaised partnerships / EIT KICs

Co-Programmed


Co-Funded

\* Calls with opening dates in 2023-24

\*\* Calls with opening dates not before 2022



### **Cluster 5 - overview**



### **Cluster 5 – Links to other clusters**

#### Cluster 1

 Health impacts of climate change, energy production/ consumption, transport emissions and mobility patterns

#### **Cluster 6**

- Bioeconomy
- Circular economy
- Environmental observation

#### **Cluster 2**

Societal dimension of transformation

#### Cluster 4

• Manufacturing

#### Low-carbon, clean, circular industries

- Artificial Intelligence and Robotics
  - Advanced Materials

• Space

#### **Cluster 3**

- Protection of critical infrastructure
- Cybersecurity
- Climate-related disaster risk
   management

### **Cluster 5 Work programme - overview**



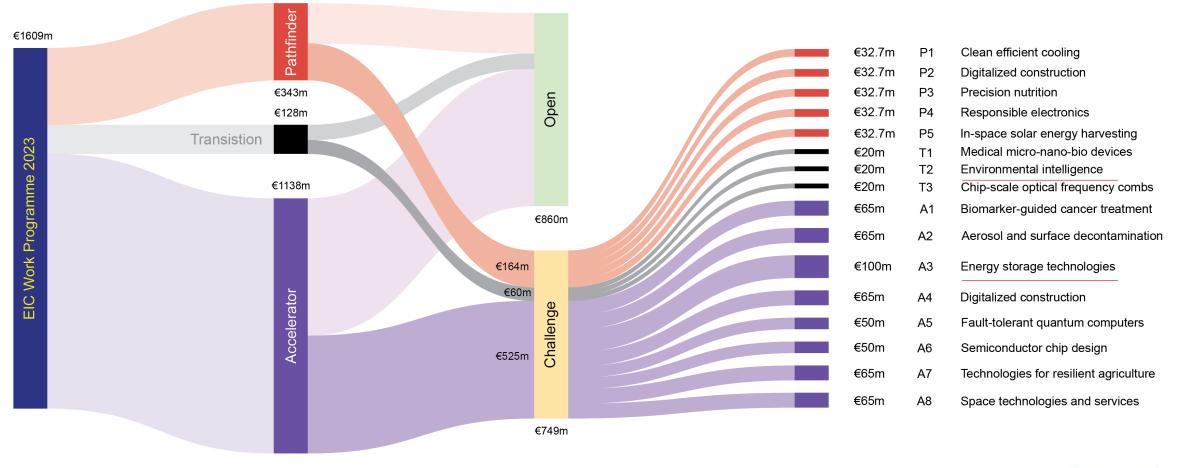
### **EIC** main instruments and characteristics



#### Pathfinder

- Early stage research on breakthrough technologies
- Grants up to €3/4 million
- Successor of FET(Open & Proactive)

#### **Transition**


- **Technology maturation** from proof of concept to validation
- Business & market readiness
- Grants up to €2.5 million

#### Accelerator

- **Development & scale up** of deep-tech/ disruptive innovations by startups/ SMEs
- Blended finance (grants up to €2.5 million; equity investment up to €15 million)
- Successor of SME instrument

- Focus on breakthrough, market-creating, deep-tech innovations
- Steered by **EIC Board** of leading innovators (entrepreneurs, investors, researchers, ecosystem)
- Business Acceleration Services (coaches/ mentors, corporates, investors, ecosystem)
- Pro-active management by EIC Programme Managers
- Follow up funding for results from Horizon (ERC, EIT, collaborative) & national programmes

# In 2023 EIC allocates ~€1.6bn to Open and Challenge calls by its Pathfinder, Transition, Accelerator programs






### **EIC Cleantech challenges**



| EIC Challenges 2021 |                                                                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                                          |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                     | Pathfinder                                                                                                                                                                                                                        | Transition                                                                                                                                | Accelerator                                                                                                                              |  |  |
| Cleantech           | <ul> <li>Novel routes to green hydrogen<br/>production (Portfolio kick off meeting<br/>October 2022)</li> </ul>                                                                                                                   | Energy harvesting and storage technologies                                                                                                | Green Deal innovations for the economic recovery                                                                                         |  |  |
| EIC Challenges 2022 |                                                                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                                          |  |  |
|                     | Pathfinder                                                                                                                                                                                                                        | Transition                                                                                                                                | Accelerator                                                                                                                              |  |  |
| Cleantech           | <ul> <li>Carbon dioxide &amp; Nitrogen<br/>management and valorisation (final<br/>retained list end March 2023)</li> <li>Mid-long term, systems-integrated<br/>energy storage (final retained list end<br/>March 2023)</li> </ul> | <ul> <li>Process and system<br/>integration of clean energy<br/>technologies</li> <li>Green digital devices for the<br/>future</li> </ul> | • Technologies for 'Fit for 55'                                                                                                          |  |  |
| EIC Challenges 2023 |                                                                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                                          |  |  |
|                     | Pathfinder (32.7mln Euro)                                                                                                                                                                                                         | Transition (20mln Euro)                                                                                                                   | Accelerator (100mln Euro)                                                                                                                |  |  |
| Cleantech           | <ul> <li>Clean and efficient cooling<br/>(submission deadline 18<sup>th</sup> October 2023)</li> </ul>                                                                                                                            | • Environmental Intelligence<br>(submission deadline 12 <sup>th</sup> April<br>and 27 <sup>th</sup> September 2023)                       | <ul> <li>Energy Storage (submission<br/>deadline 22<sup>nd</sup> March, 7<sup>th</sup> June, 4<sup>th</sup><br/>October 2023)</li> </ul> |  |  |

### Portfolios

- Green hydrogen generation and uses
- Energy storage and systems integration
- CO2 and N management valorization
- Energy harvesting and conversion
- Clean cooling and cold chains
- Energy services and digital solutions

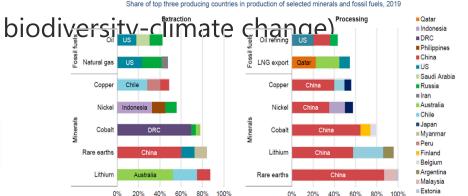


European

**Future research and innovation trends** (MNR, georeactors and deep geothermal, sustainable mining/sea mining, materials substitution, solar chemistry, click chemistry..)

### **R&I** priorities for the energy transition

**1.Final use of energy** (renewable valleys, energy saving and efficiency, digital transition)


2.Circularity and security (reuse and recycle, critical materials, domestic resources) 3.Systems integration (sectors coupling, industrial symbiosis, reconversion infractructures)



### 64% of primary energy is lost

UN environment program, 2020 Iron & steel, aluminium, 4.8Gt and other metals nent, lime, plaster, and 23%` 15% per non-metallic mineral 4.4Gt 5 Gt 11.5 Gt Plastics and rubber Wood production Total globa 49Gt 1995 2015

Emissions from materials production



#### EU: 75% to 100% reliant on import for

Nature Climate Change

Vol 13, April 2023



Nature climate solutions and





- Fit for 55%
- RepowerEU, RefuelEU
- Green deal industrial plan
- Net zero industry act
- Critical raw materials act
- Electricity market design

### Key needs for innovation: speed, simplicity, ale

### Medium-long duration energy storage (10-100 hours capacity

Maturity

Concept phase

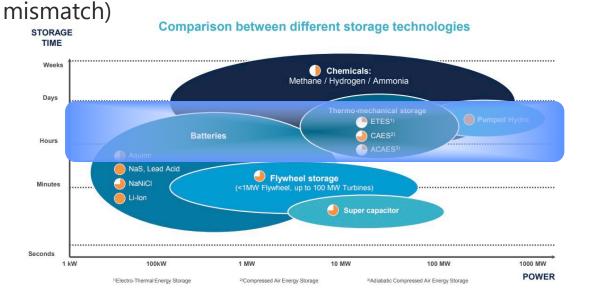
Demonstration

Commercial

Technology

Chemical

Thermal


Mechanical

Early commercial

Electrochemical



Electricity storage need mainly driven by the intermittency of wind/PV (temporal



Source: U.S. Department of Energy Fuel Cell Technologies Office

### **Energy systems flexibility, a COMBINATION** of:

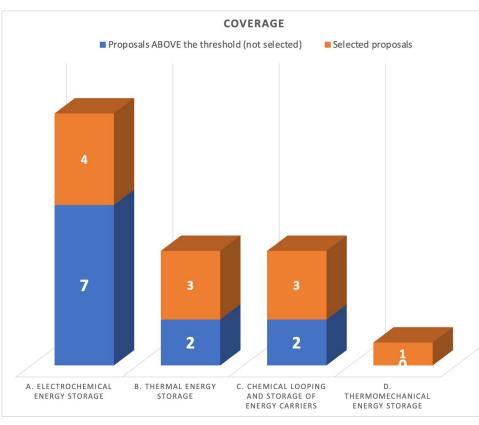
- Dispatchable generation (embedded storage)
  - Grid infrastructure and synthetic inertia
  - Demand response and fast load control
- Sectors coupling
- Storage assets

Fully renewable EU power system by 2050:

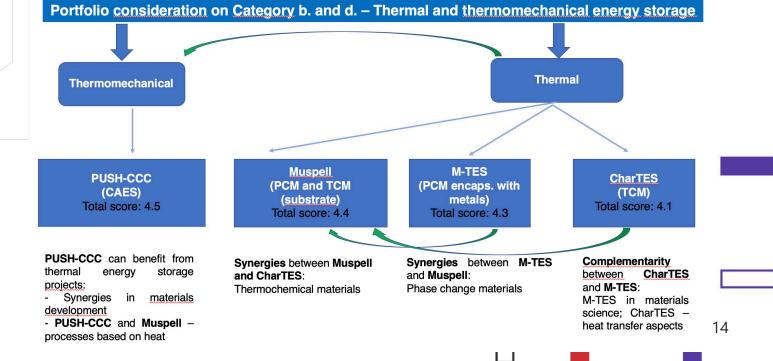
+240% grid transmission (+ 140 GW)

flexible zero carbon firm capacity (programmable RES, seasonal storage) Applied Energy 233–234 (2019)

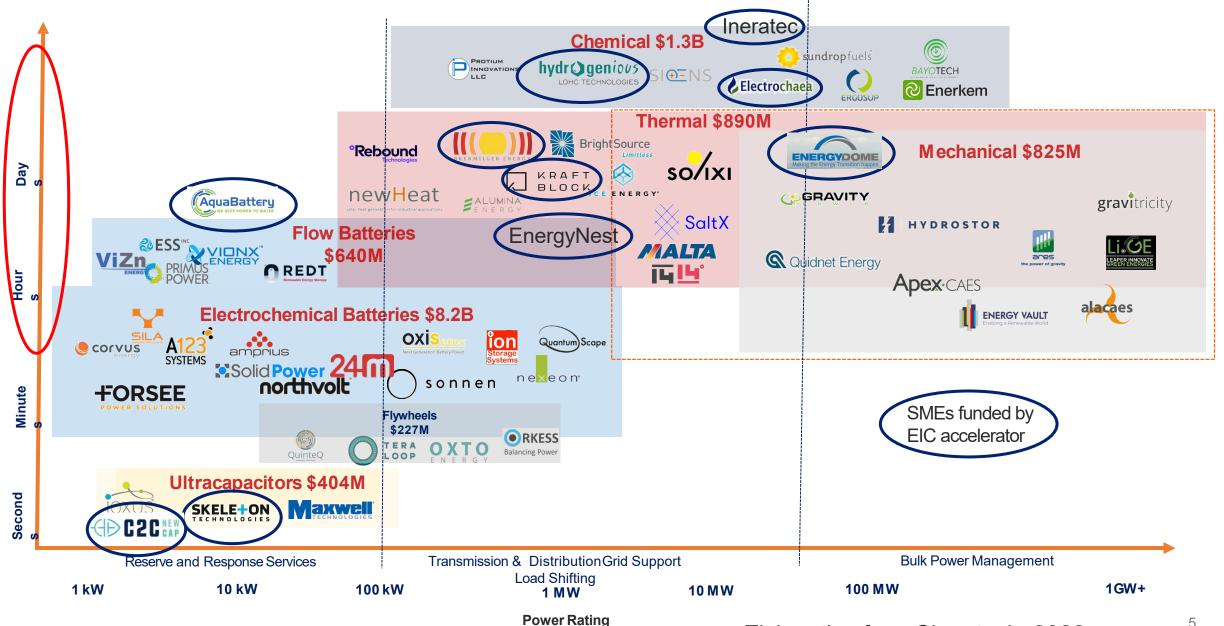
#### **Spatial mismatch:** generation vs transmission trade offs


**The scale of intermittent RES balancing is critical:** continental-scale balancing leads to low-cost electricity with higher transmission costs. supply scale vs infrastructure requirements (Trondle et al., Joule 4, Sept 16, 2020https://doi.org/10.1016/j.joule.2020.07.018

#### **Cross border capacity needed at high NG cost:**

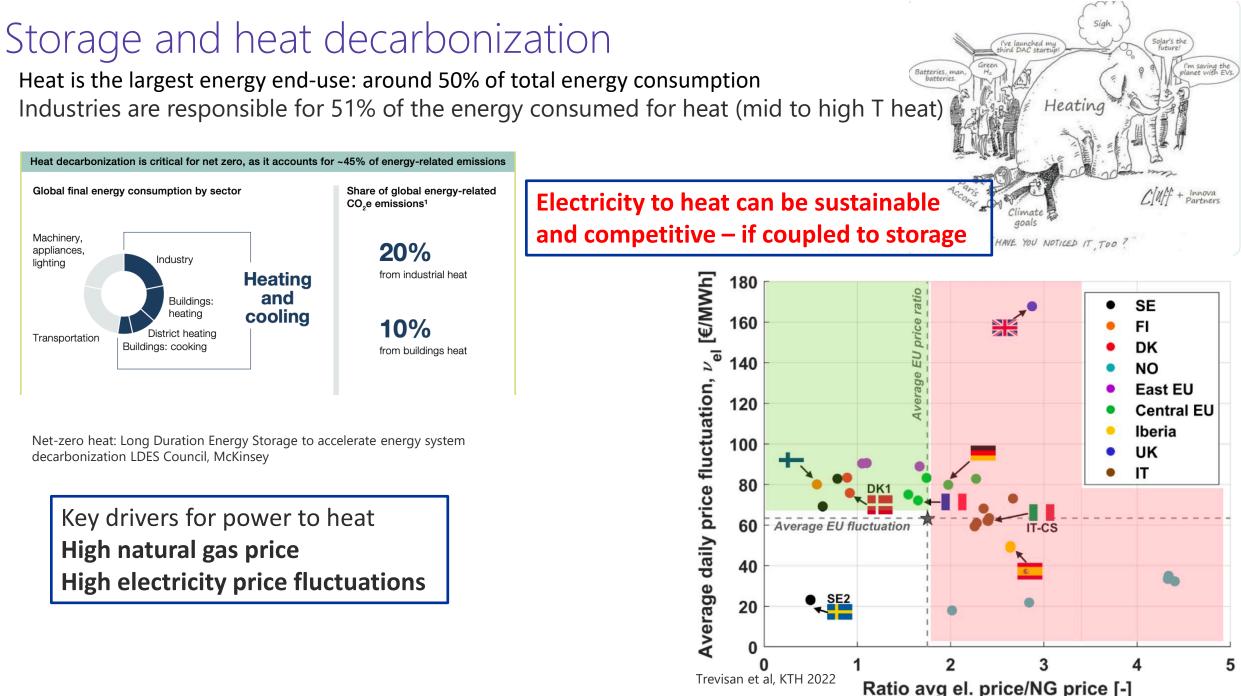

64 GW by 2030, 88 GW 2040 (75% of 2025) + 41 GW storage ENTSO-E TYNDP 2022 · System Needs Study | July 2022

### Portfolio composition for pathfinder challenge on energy storage European Council






- Electrochemical storage
- Thermal storage
- Chemical storage in energy carriers
- Thermomechanical storage




### **Energy Storage: market trends**



**Discharge Duration** 

Elaboration from Cleantech, 2022



#### Thermal Energy Storage for hard to abate industrial sector

Industrial batch processes: intermittent waste heat storage Steel decarbonization: electric air furnaces + high T heat recovery Cement and limestone (SaltX)

Sensible heat

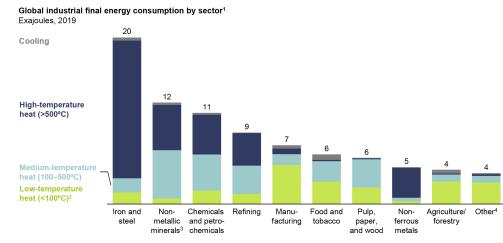
<0-2.400°C

durations

available

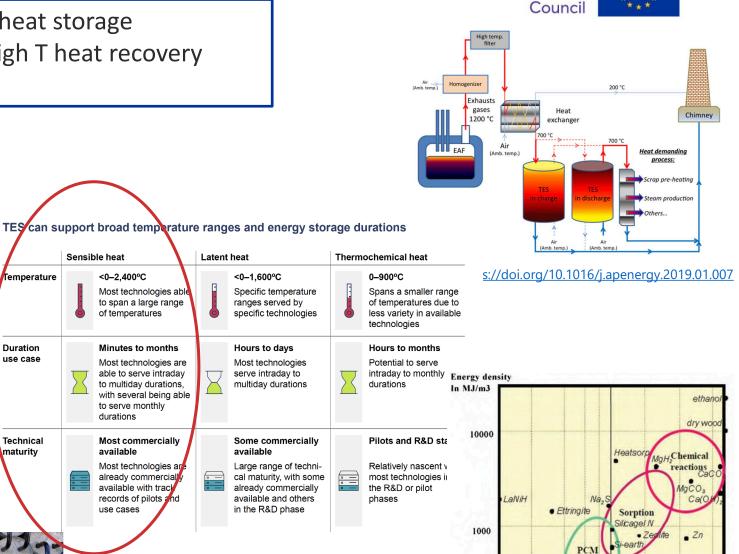
use cases

Temperature


Duration

use case

Technical


maturity

Industrial energy consumption is concentrated in high-temperature applications



Waste heat or power to heat solution Sensible heat storage (HEATCRETE®)





European Innovation

Na<sub>2</sub>HPO

60 80 100

40

Na2SO4H.

(sensible)

ce Water

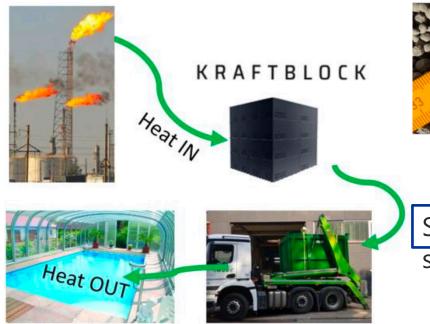
100

10 20 NiCa

batter

flywhee

400 800 1000


Pb.

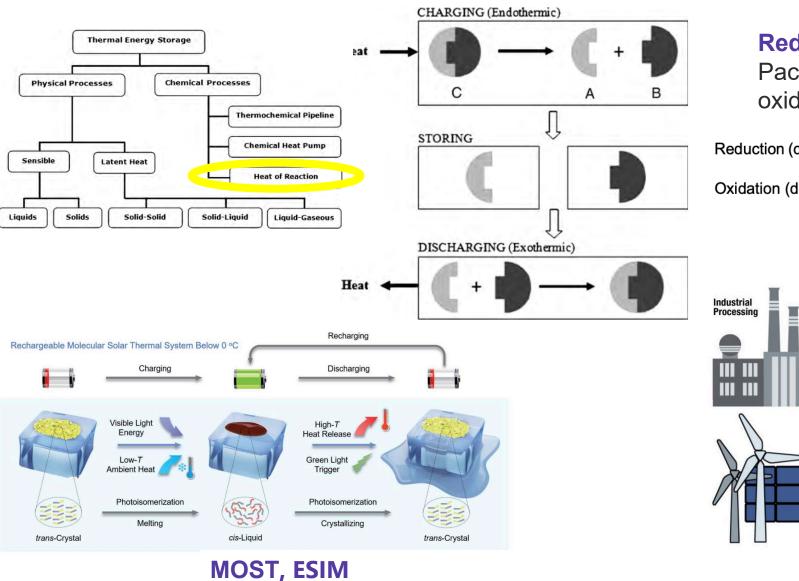
200

NH /H,O

## The spatial dimension of energy storage: modular TES








Waste heat recovery and transport Packed bed sensible TES up to 1300°C : **Kraftblock Possibility of direct heat transfer to particle beds** 

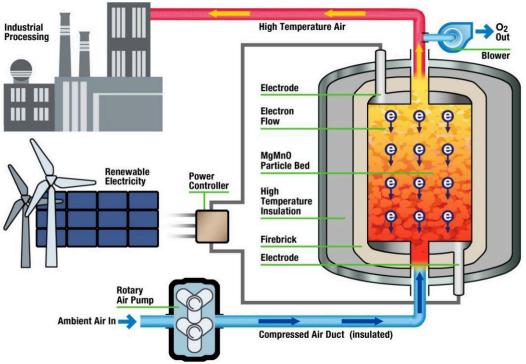
Storage enables spatial and temporal decoupling of heat supply/demand

Research/innovation challenges in TES: Charging/discharging **dynamics** (power to heat via induction, microwave heating) – **heating/cooling quality Heat transfer**: combination of cascaded latent, sensible and thermochemical storage; integration of highly thermal conductive particles, micro-nano encapsulated PCM; design of heat exchangers **High Temperature of stored heat**– durability, ciclability, insulation

#### Thermochemical and molecular energy storage

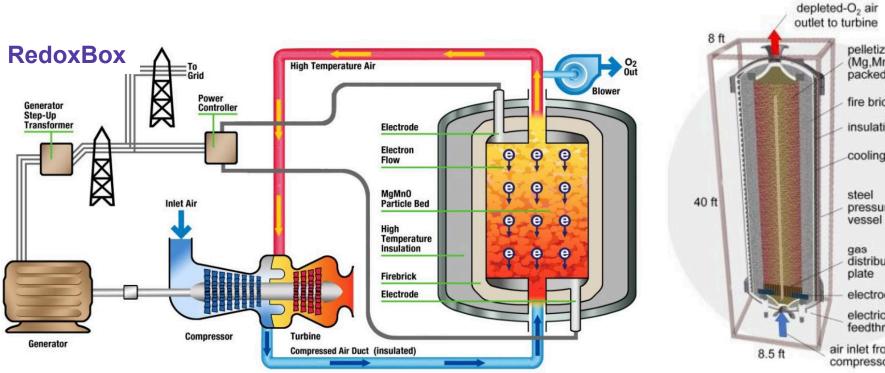


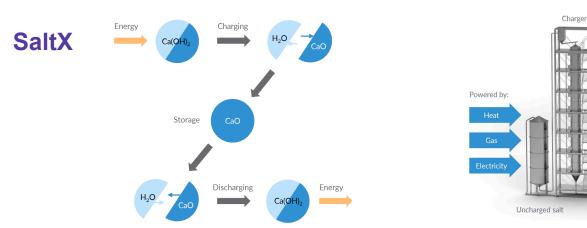
Molecular photoswitching + PCM

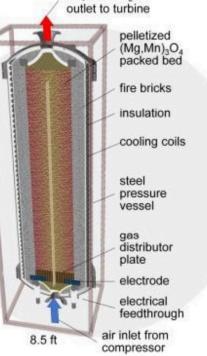

Heat harvesting + storage in chemical bonds



#### RedoxBox


Packed bed of magnesium manganese oxide pellets


| Reduction (charge):    | MgMnO <sub>3</sub> (s)+ heat $\rightarrow$ MgMnO <sub>2</sub> (s) + $\frac{1}{2}$ O <sub>2</sub> (g)       |
|------------------------|------------------------------------------------------------------------------------------------------------|
| Oxidation (discharge): | MgMnO <sub>2</sub> (s) + $\frac{1}{2}$ O <sub>2</sub> (in air) $\rightarrow$ MgMnO <sub>3</sub> (s) + heat |



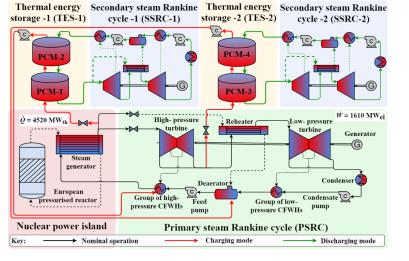

DOI: 10.1039/d2sc01873j

#### Thermochemical storage integration in power cycles

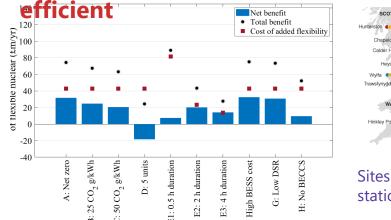


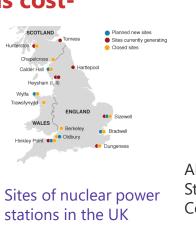





Discharger

Generating:



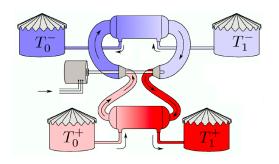


20

#### **Energy storage integration in the generation mix**



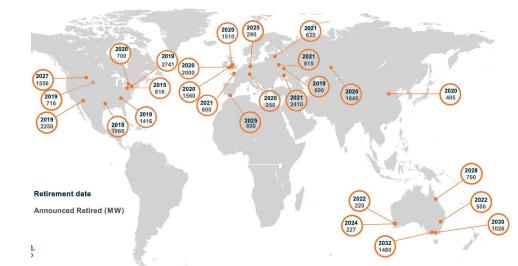
1.Nuclear flexibility upgrade is cost-



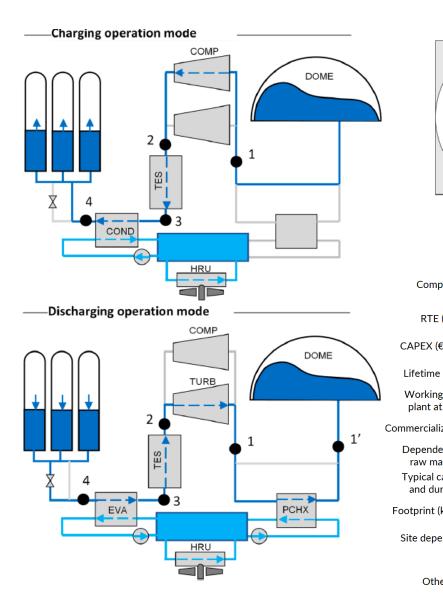


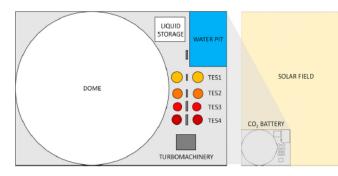

European Innovation Council

benefit from **£60.1– 63.1m/yr** (50 gCO<sub>2</sub>/kWh) to **£67.4–74.3m/yr** for a net-zero carbon system


Al Kindi A.A., Aunedi M., Pantaleo A.M., Strbac G., Markides C.N. (2022) Energy Conversion and Management

#### **2.Coal power plants refurbishment to storage: the Bryton Energy concept** (Arpa-e) Nobel Laureate R. Laughlin: 'energy storage is a problem of 19th century science. No future laboratory breakthroughs or discoveries are required for solving it. All that is needed is **fine engineering** and **assiduous attention to detail**..'





"...the storage capacity of months becomes feasible once the engine and HX exists as a product one can purchase at a **known cost**, particularly if the **heat is further transferred into cheaper media** for longer-term storage. Thus, pumped thermal storage with HX is not a niche solution to the energy storage problem but a global one..."

Pumped thermal grid storage with heat exchange," by R. B. Laughlin, *Journal of Ren and Sustain Energy* (2017)



### EIC accelerator: EnergyDome

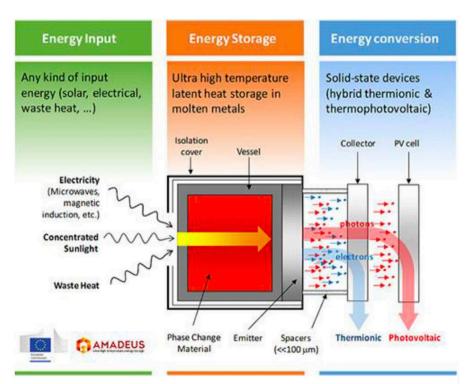


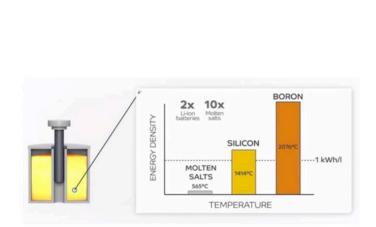


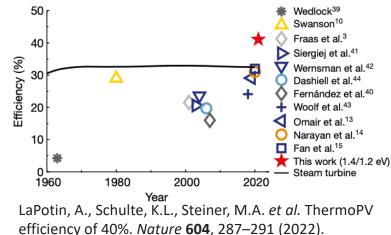
ENERGYDOME

#### CO<sub>2</sub> based Utility-Scale Long Duration Energy Storage

#### Fit for 55


We enable dispatchable renewable electricity to make the net zero energy transition possible Type of Eunding: Blended Finance


|                        | CO <sub>2</sub> Battery PHS + CAES                                                                                                  |                                                 | GRAVITATIONAL                                      | Iron Flow Battery                                                                                                |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| npany                  | ENERGYDOME<br>Maling the Crergy Transition happen                                                                                   | HYDROSTOR                                       | Energy VAULT<br>Enabling a Renevable World         |                                                                                                                  |  |
| E (%)                  | 75 - 80+                                                                                                                            | 60                                              | 75 - 80+                                           | 65 - 70                                                                                                          |  |
| <mark>(</mark> €/kWh ) | 150-200 for First of a Kind*                                                                                                        | Competitive only on very large scale            | 300                                                | >200 under strong cost reduction<br>hypothesis**                                                                 |  |
| ne (years)             | 30+                                                                                                                                 | 30+                                             | 30+                                                | 20 - 25 (not proven)                                                                                             |  |
| ng demo<br>at scale    | Yes                                                                                                                                 | Yes                                             | No                                                 | Yes                                                                                                              |  |
| alization date         | 2022                                                                                                                                | Commercial                                      | >2024                                              | Commercial                                                                                                       |  |
| dency on<br>naterial   | Low                                                                                                                                 | Low                                             | High due to the large amounts of materials needed. | Iron, salt, and H2O but dependant<br>on liquid electrolyte production                                            |  |
| l capacity<br>luration | 20MW; 4-24h                                                                                                                         | 50MW; >10h                                      | Unknown, but expected to be<br>moderate            | kW scale; 4 to 12 hours                                                                                          |  |
| t (kWh/m2)             | 4-5                                                                                                                                 | 15 - 20                                         | <5                                                 | 2 - 4                                                                                                            |  |
| pendency               | None                                                                                                                                | High                                            | Moderate                                           | None                                                                                                             |  |
| hers                   | No dependency on ambient<br>temperature; No supply chain<br>constraints; Potential visual impact<br>concerns depending on location; | Long development time; high<br>geological risk. | Very high visual impact, not proven<br>technology  | 100% Depth of discharge;<br>Non-hazardous electrolyte; Supply<br>chain constraint on electrolyte<br>availability |  |


Journal of Engin. for Gas Turbines and Power AUGUST 2022, Vol. 144 / 081012-1

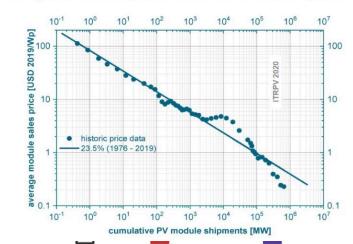
| Key Metrics Li-ion battery        |                                                                      | <b>CI2</b> BATTERY<br>First of a kind                             | <b>C2BATTERY</b><br>Mature technology   | European<br>Innovation<br>Council                                                                                                                            |                                                                                                                                                                                                                               |  |  |
|-----------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Round-Trip<br>Efficiency<br>(RTE) | ~90%<br>With degradation<br>over time                                | 75%<br>Without degradation<br>over time                           | 81%<br>Without degradation<br>over time |                                                                                                                                                              |                                                                                                                                                                                                                               |  |  |
| CAPEX                             | 280 €/kWh<br>(Mass Scale)                                            | 150-200 €/kWh                                                     | 103 €/kWh with 50<br>units a year       | 2023                                                                                                                                                         | 2024                                                                                                                                                                                                                          |  |  |
|                                   |                                                                      |                                                                   |                                         |                                                                                                                                                              | Milestone 1 (GRANT) <b>€3.5M</b>                                                                                                                                                                                              |  |  |
| Lifetime                          | 10 yrs – cell<br>replacement                                         | 30 yrs                                                            |                                         | <ul> <li>Design and Testing of an axial compressor</li> <li>CO2 Battery efficiency improvement</li> <li>IPR empowerment</li> </ul> Milestone 2 (EQUITY) €50M |                                                                                                                                                                                                                               |  |  |
| Capacity                          | 20%-80%, with<br>degradation over<br>time; 10% overbuilt<br>required | 0%-100%<br>Without degradation over time<br>No overbuild required |                                         |                                                                                                                                                              |                                                                                                                                                                                                                               |  |  |
|                                   |                                                                      |                                                                   |                                         |                                                                                                                                                              | <ul> <li>20 MW/200 MWh plant manufacturing and testing</li> <li>Results certification</li> <li>Company scale-up</li> <li>CO2 Battery full commercialization</li> </ul>                                                        |  |  |
|                                   |                                                                      |                                                                   |                                         | - €4M throu<br>- €10M from<br>Third Deriva<br>- €10M as c                                                                                                    | already raised<br>agh angel investors in June and December 2020<br>in 360 Capital, Barclays, Novum Capital Partners and<br>tive in November 2021<br>convertible with CDP Venture Capital and the existing<br>is in April 2022 |  |  |

## Power to heat to power: perspectives of thermoPV and the EIC transition instrument








European Innovation

Council

ThermoPV: cost reduction similar to PV Electric efficiency 40% lab scale

Learning curve for module price as a function of cumulative shipments

Antora Energy (Arpa-e), Amadeus/Thermobat (EIC), Nano-TEC (ERC CoG) Trade offs cost vs efficiency: thermoeconomic comparison in different market segments



### **EIC Accelerator – The evaluation process**



We will help you to prepare your business plan and draft a proposal with AI tool and coaching You submit your full proposal which will be assessed by Remote evaluators + **Full Proposal** 2 3 You have a disruptive / deep tech You will pitch your innovation idea with a in front of EIC Jury Members 4 potential to scale up and you need financial support If selected, you will sign the contract Tell us your story in 5 pages A four-steps process



#### **Investment component**

- minimum EUR0.5 million and maximum EUR15 million,
- -usually in the form of direct equity or quasi-equity,
- maximum 25% of the voting shares of the company,
- -"patient capital" principle (7-10 years perspective on average).

### **Grant component**

- maximum EUR2.5 million,
- -eligible costs are reimbursed up to a maximum of 70%,
- -innovation activities supported should be completed within 24 months,
- -small mid-caps are not eligible for grant (but can apply for investment only).

### Alignment with EU Policies and synergies



#### **Relevance to EU policies and initiatives**

HEU SET Plan; Green Deal; Next generation EU; FIT-for-55; Repower EU

#### Synergy/complementarity with other EU programmes (examples)

- CL5, Destination 2: Cross sectorial solutions for the climate transition, 'A competitive and sustainable EU battery value chain', calls HORIZON-CL5-2023-D2-01-01 to HORIZON-CL5-2023-D2-01-05
- CL5, Destination 2: Cross sectorial solutions for the climate transition, 'A competitive and sustainable EU battery value chain', calls HORIZON-CL5-2023-D2-02-01 to HORIZON-CL5-2023-D2-02-03
- CL5, Destination 2: Cross sectorial solutions for the climate transition, 'A competitive and sustainable EU battery value chain', calls HORIZON-CL5-2024-D2-01-01 to HORIZON-CL5-2024-D2-01-03
- CL5, Destination 2: Cross sectorial solutions for the climate transition, 'A competitive and sustainable EU battery value chain', calls HORIZON-CL5-2024-D2-02-01 to HORIZON-CL5-2024-D2-02-04
- CL5, Destination 3: Sustainable, secure and competitive energy supply, 'Energy systems, grid and storage', call HORIZON-CL5-2024-D3-01-16
- CL5, Destination 5: Clean and competitive solutions for all transport modes, 'Zero emission road transport', \_\_\_\_\_ calls HORIZON-CL5-2023-D5-01-02, HORIZON-CL5-2024-D5-01-03 to HORIZON-CL5-2024-D5-01-05



### Key remarks: Success and failure in HEU



- Policy background: link projects to policy context and Horizon EU strategic framework
- Projects focused on scope of call
- Projects addressing all aspects: exploitation, communication, dissemination etc
- Cross sector contamination and multidisciplinarity: focus on sectors contaminations
- Interaction with Policy Officers
- EIC accelerator: several attempts often needed, gender parity, team with good mix of knowledge (CEO, CTO, CFO), market and competitors analysis; good pitch and business model, product already patented and/or mature for the market

### Specific aims of PM proactive management



- follow-up projects closely, from scientifical and technological sides
- Build and manage programmes composed by projects with shared components/complementarities; enforce collaborations among portfolios
- support, re-orient, suspend or terminate projects
- stimulate serendipity, research and knowledge contamination for new applications
- share results, facilitate innovation ecosystems and facilitate networking
- address and overcome legislative bottlenecks
- exploitation first, instead of publication
- address the rights for inventors to do something with 'their' results
- Launch innovation deals: interservices working groups to address regulatory legislative barriers
- Identify, nurture and catalyse innovations in EIC beneficiaries

## Key remarks on energy storage: scientific-technological challenges



- Circularity by design and non critical / non toxic raw materials (security vs efficiency)
  - Technologies and processes integration (storage duration hybridization)
  - Real time control and computational tools for smart energy systems
  - Sector coupling and industrial decarbonization opportunities (process systems optimization)
  - Heating/cooling sector decarbonization (spatial and temporal dimensions)
  - Comparative techno-economic analyses and **merit order of uses** (for policymakers) **Key remarks: regulatory and socio-economic drivers for innovation in storage**
  - Permitting issues (grid Interconnection) and access to grid (prosumers)
  - Social participation and energy communities to enable demand response
  - Market mechanisms to reward flexibility and a unique European energy market
  - Carbon markets: broader picture view





# Thank you!

Antonio.pantaleo@ec.Europa.eu

© European Union, 2021

Reuse of this document is allowed, provided appropriate credit is given and any changes are indicated (Creative Commons Attribution 4.0 International license). For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

All images © European Union, unless otherwise stated. Image sources: ©Tom Merton/Caia Image, #315243588; ©REDPIXEL, #220695664; ©Halfpoint, #180578699; ©bnenin #213968072; ©MyMicrostock/Stocksy, #3094437622021. Source: Stock.Adobe.com. Icons © Flaticon – all rights reserved.

#### EIC Programme Manager: a new role

European Innovation Council

Building strategic visions for technology and scientific breakthroughts, identification of emerging research needs and definition of challenges, chair of evaluation panel (pathfinder) and portfolio implementation

Clustering projects in thematic portfolios, enhance cross-sectorial contaminations and serendipity

Scientific knowledge + networking + entrepreneurial vision to pull through research towards innovation

Temporary role as scientific and innovation expert to bring vision, technical knowledge, management capabilities and networking to EC

#### **Bridging policy and implementation**



Outreach to R&I stakeholders, links to other EU programmes and engagement with innovation ecosystem community (investors, innovators, researchers, corporates) to build an ecosystem around technology breakthroughts

32



Renewable Hydrogen (production, storage, logistics, end use)

Energy storage (electrical, thermal, chemical, mechanical and electrochemical)

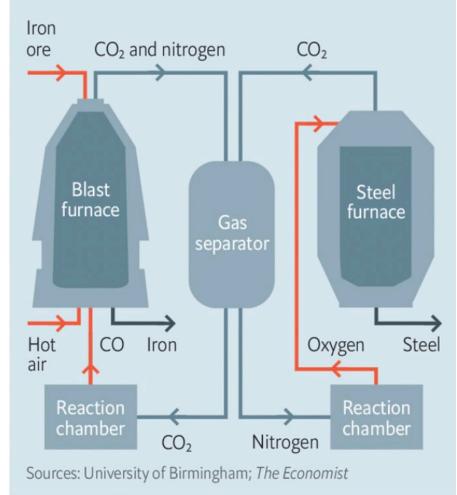
Solar conversion technologies (solar-to: thermal, fuel, electricity) and solar chemistry

**Energy harvesting and conversion** 

CO2 and N management and valorization

**Climate and Environment** (air/water/soil monitoring/depolluting, environmental intelligence)

#### **Research topics for future challenges**


- Clean cooling technologies
- · Water-food-energy nexus and environmental remediation/energy
- Modular nuclear reactors
- Carbon capture, negative emission technologies
- Natural H2 (georeactors) deep geothermal
- sustainable mining
- Bio-inspired and biobased solutions for energy harvesting and conversion

### **Decarbonizing steel industry**



The steel merry-go-round

Closed-loop recycling



#### H2 and Steel:

Closed loop carbon recycling system to replace coke, pumping CO in the blast furnace

CO2 is recovered and transformed in CO with perovskites

Y. Ding et al, <u>https://doi.org/10.1016/j.jclepro.2023.135963</u>

The Economist

# Energy storage: research and innovation needs



- Mid to long duration (10-100 hours): pathfinder challenge
- Systems integrated energy storage: industrial processes
- Spatial and temporal decoupling
- Short and mid duration integration, demand response
- Decarbonization of heating and heat pumps
- Molecular storage