Methanation of captured carbon dioxide in a solid oxide membrane reactor

Esperanza Ruiz Martínez esperanza.ruiz@ciemat.es

Unit for Sustainable Thermochemical Valorisation Web: <u>http://rdgroups.ciemat.es/web/valer</u>

Energy Department CIEMAT

Catalytic CO₂ Methanation

Catalytic CO₂ Methanation: Challenges

- Activity, selectivity & tolerance inhibitors and Poisons
- \uparrow Lifetime $\Rightarrow \downarrow$ Deactivation (C, H₂O+ \uparrow T) or regeneration methods
- Reactor design optimization: exothermicity control
- \uparrow Energy efficiency (ηe) $\Rightarrow \downarrow$ Energy required for CH₄ production
- \downarrow CAPEX & OPEX
- Process intensification:
 - ✓ Selective activation (photo-electro/photo/electro-catalysis)
 - ✓ In-situ H₂ production

Electrochemically Enhanced Catalytic CO₂ Methanation with in-situ H₂ Production

 $\Delta r >> r_e; r_e = I/nF$ (electrocatalysis)

SOLID OXIDE ELECTROLYTE MEMBRANE REACTOR (DOUBLE CHAMBER)

- \checkmark Different reaction gas: CO₂ (cathode) / H₂O, CxHyOz+H₂O.. (anode)
- Both electrodes catalytically active
- ✓ In-situ tuning activity/selectivity by $\Delta V/I$ (vs. ΔT): $\downarrow P \& T \rightarrow \uparrow \eta e \& \downarrow costs$
- ✓ ↑ Lifetime (\downarrow poisoning, in-situ regeneration) $\rightarrow \downarrow$ OPEX
- \checkmark In-situ H₂ production from renewable energy & sources (H₂O, biomass residues: glycerol (C₃H₈O₃), ..)
- \checkmark System integration (process intensification) \rightarrow Compact design $\rightarrow \downarrow$ reactor size $\rightarrow \downarrow$ capital cost
- \checkmark in-situ H₂ & co-O₂ production/CO₂ capture $\rightarrow \downarrow$ operating costs
- ✓ Thermal control: electrolysis or reforming (endo.)/hydrogenation (exot.) \rightarrow \uparrow η e & \downarrow costs

Most previous studies

Lab-scale, @configurations (disks) and/or conditions (diluted gas) \longrightarrow Fundamental aspects

Challenges for viability (\uparrow energy efficiency, \downarrow costs & \uparrow long term durability)

- ✓ ↑ Efficiency, selectivity, stability and durability of electro-catalysts: ↑ dispersion,
 ↓ particle size, promoter or co-catalyst addition, etc.
- ✓ ↑ Chemical stability of solid electrolytes to CO_2 , H_2O ..
- ✓ ↓Ohmic losses: ↓electrode thickness, electrode supported thin electrolyte systems, ↑ ionic conductivity of electrolytes & e- conductivity of electrodes..
- ✓ \downarrow T_{operation} → ↑ Energy efficiency :→ ↑ ionic conductivity at low T→Intermediate T H⁺ conductors
- ✓ ↓ Material cost: → cheap non noble metals
- \checkmark Simplicity & scalability in material preparation

CIEMAT Research

- Sench-scale, \uparrow flowrates, 1 atm., \uparrow [CO₂] streams
- Easily adaptable tubular- double chamber configurations
- Cheap and widespread catalyst electrodes
- Appropriate & readily scalable deposition procedures

Assessment of

Potential Practical
Application

Aim: Development of integrated systems for in-situ H_2 production and CO_2 conversion to CH_4 and their study under realistic conditions

Approach: in-situ H_2 production (by steam electrolysis, hydrocarbon reforming, etc.) and CO_2 hydrogenation to CH_4 in intermediate-temperature solid oxide co-ionic ($H^+ \& O^{2-}$ conduction) electrolyte membrane reactors (double chamber)

Research activities:

- Development of easily scalable double-chamber reactor configurations of cheap, effective, selective, stable and durable electro-catalyst for both processes.
- $\checkmark\,$ Study under realistic conditions at bench scale for:
- Screening operating conditions and electrolytes/electro-catalysts
- Assessment of stability, durability and useful lifetime

Design & preparation of an easily scalable electro-catalyst configuration

Electrode supported tubular electrochemical cell:

Commercial tube of anode supported co-ionic solid oxide electrolyte:
 Porous anode (Ni-perovskite) → internal chamber
 Co-ionic solid oxide electrolyte (perovskite) → intermediate film

- Cu cathode→ external chamber

"Dip-coating": Pt thin film (Cu electroless activation)

"Electroless": (Cu catalyst film)

PATENTED

PATENTED

• Flow rate: up to 20 Nm³/h, Temperature: up to 900 ° C, atmospheric pressure

Screening of operating conditions:

Criteria: ↑ Energy Efficiency + ↓ Costs

- ✓ Maximize target fuel yield: CO₂ conversion (XCO₂) & selectivity (S_{CH4})
- ✓ Minimize energy input: maximize faradaic efficiency (η_c) & minimize energy cost (C_E)

Conclusions

- The development of viable solid oxide electrolyte based technologies for power to gas applications requires new and optimized advanced materials and testing under realistic conditions of potential practical application
- ✓ Material research opportunities for improving the activity, selectivity, stability, durability and scalability of electro-catalysts, as well as for increasing energy efficiency and reducing the cost of the process

Thank you for your attention!