

Workshop on "Carbon Capture, Storage & Utilization"

Consiglio Nazionale delle Ricerche

Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili

<u>S. Cimino*</u>, L. Lisi A. Coppola, M. Urciuolo R. Chirone, F. Scala

*<u>stefano.cimino@cnr.it</u>

Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale Università degli Studi di Napoli Federico II

CO₂ Capture & Utilization – Power to Gas

- Strong reduction of source greenhouse gas emissions
- Sustainably convert CO₂ emissions from industrial processes into synthetic fuels
 - CO₂ capture from point sources or air
 - H₂ from renewable energy sources
 - Carbon neutral cycle
 - Chemical storage of excess energy
 - CH₄ (SNG) advantageous energy carrier: easily handled, existing distribution grid

Conventional CO₂ Capture, Utilization & Storage

	Absorption	Adsorption	Membrane
Energy requirement	4-6 MJ/kg CO ₂	2-3 MJ/kg CO ₂	0.5-6 MJ/kg CO ₂
Cost	expensive	expensive	expensive
CO ₂ recovery	90-98%	80-95%	80-90%
Challanges	 Corrosion Huge energy req. Solvent degradation 	 Attrition Pressure drops Affected by impurities 	 Not suitable for high T Low CO₂ select. Costly membranes

Omodolor, et al. Ind. Eng. Chem. Res. 2020, 59, 17612–17631.

- energy intensive CO₂ desorption step: high cost
- problem of transporting concentrated CO₂ to another site for storage or utilization
- Difficult thermal management of methanator

Can we make it simpler ?

Combined CO₂ Capture & Methanation

- Innovative strategy integrating both technologies
- <u>No need for CO₂ desorption and transport</u>

Duyar, M.S.; Treviño, M.A.A.; Farrauto, R.J. Dual function materials for CO2 capture and conversion using renewable H2. Appl. Catal. B Environ. 2015, 168–169, 370–376.

Combined CO₂ Capture & Methanation

Tsiotsias, et al. Catalysts 2020, 10, 1–36; 1 Arellano-Treviño, et al. Chem. Eng. J. 2019, 375, 121953 Bermejo-López et al. Appl. Catal. B Environ. 2019, 256, 117845.

- <u>Dual Function Materials</u> capture CO₂ from industrial flue gases (or even air) and release it as concentrated synthetic natural gas (SNG)
- Catalytic looping process
- 2 half-cycles with a CO₂ sorbent/catalyst
- Requires materials / processes to switch between capture & methanation cyclically
- Analogy with LNT deNOx

Combined CO₂ Capture & Methanation

Combined CO₂ Capture & Methanation

Proposed process configurations

- A. Mixed Beds of Sorbent + Catalyst
 - Thermal coupling: heat of methanation drives CO₂ desorption / sorbent regeneration
- B. DFM: Intimate mix at nanoscale
 - ✓ Thermal + Chemical coupling via spill-over from sorbent to catalyst
 - ✓ More effective regeneration at lower temperatures
 - ✓ Higher CH₄ productivity

Key to success: development of highly effective DFMs

State of the art DFMs:

- Active phase: 5-10 % wt. Ru
- Sorbent: 5-15% Na (K, Ca)
- Support: Al₂O₃

What can we improve?

- <u>Catalytic methanation activity (work @ lower temperature)</u>
- ✓ <u>CH₄ selectivity</u>
- ✓ Cost (metal loading)
- ✓ Oxidation resistance
- ✓ Lower parasitic H₂ consumption
- Large & fast CO₂ capture capacity + selectivity
- ✓ Fast & easy regeneration @ low temperature
- ✓ Mechanical strength
- ✓ <u>Stability / Durability / Tolerance to Poisoning</u>

Key to success: DFM development

Comparative study on the effect of alkali promoters (Li, Na, K) on the performance of 1%Ru/Al₂O₃ [*Cimino et al.* J. CO₂ Utilization 37 (2020)]

Activity & Selectivity of Ru/Al₂O₃

no formation of highly stable carbonates

Key to success: DFM development

m/z = 44a) CO₂ mass signal, a.u Li-Ru/Al Na(N)-Ru/Al Na-Ru/Al K-Ru/Al 200 100 300 400 500 600 700 m/z=15 a.u. b) signal, CH₄ mass 100 200 300 400 500 600 700 m/z=28CO mass signal, a.u. 100 200 500 600 700 0 300 400 Temperature, °C

H₂-TPRx of pre-adsorbed CO₂

Pre-adsorbed CO₂ converted to CH₄ for T≥130 °C

Formation of Li-Al mixed phases lowers the stability of carbonates

Fig. 2. XRD patters of Li-Ru/Al, Na-Ru/Al and K-Ru/Al catalysts after testing in the CO₂ hydrogenation reaction. The spectra of dried Ru-/Al and Na-Ru/Al samples (before pre-reduction) are also reported for reference. Legend: $\bigcirc = \gamma$ -Al₂O₃ (PDF 29-63); $\bigcirc = \text{LiAl}_5\text{O}_8$ (PDF 3-911); * = Li₂Al₄(CO₃)(OH) (PDF 37-185); $\bullet = \text{Ru}$ (PDF 6-663); # = RuO₂ (PDF 43-1027).

Li-Ru has largest CH₄ formation at lowest T
No residual CO₂ (full regeneration) @300°C

No CO formation with Li-Ru and Na(N)-Ru Absence of refractory carbonates

Key to success: DFM development

Cyclic CO₂ capture and methanation (TG-MS @230 °C)

- Stable, repeatable CH₄ production already @ 230 °C
- Repeatable CO₂ capture (regeneration)
- Faster & larger CH₄ production over Li-Ru vs. Na-Ru
- Low Ru loading: remarkable CH₄ turnover (mol CH₄ / mol Ru)

Process intensification

Dual Interconnected Fluidized Bed Reactors

- Continuous operation
- Circulating DFM
- 2 reactors, optimized individually (i.e. different T)
- High heat transfer
- Mechanical stability / Attrition/ Fragmentation

Project: ECO₂Me

Efficient CO₂ capture and Methanation

- Develop highly innovative dual function catalytic materials to facilitate the production of methane from industrial flue gas emissions aiming at a significant increase in the overall efficiency compared to the State-of-the-Art:
 Advanced Lithium Ceramics + Ru
- Develop innovative, renewable energy driven, catalytic looping processes, to produce synthetic CH₄ demonstrating effectiveness and reduction of GHG emissions: Dual Interconnected Fluidized Beds Technology
- Address economic, regulatory, environmental and (critical) raw material constraints, as well as public acceptance issues and socio-economic impact related to the proposed technological pathway: Techno-Economic Evaluation (TEE), Life Cycle Assessment (LCA), Social Impact Assessment (SIA)