

MATERIALS SELECTION FOR THE CHEERS PROJECT ON CHEMICAL LOOPING COMBUSTION

<u>Arnold Lambert¹</u>, Vincent Bracco¹, William Pelletant¹, Airy Tilland¹, Kristina Bakoc¹, Nicolas Vin¹, Stéphane Bertholin¹, Yngve Larring², Zuoan Li², Øyvind Langørgen³

¹ IFP Energies nouvelles; ² SINTEF Industry; ³ SINTEF Energy Research

Advanced Materials and Processes for Energy Applications

Energies nouvelles

EERA AMPEA virtual workshop on "Carbon Capture Utilisation and Storage" March 10-11, 2021

CHEERS PROJECT

TRL7

CHEERS: CHinese-European Emission-Reducing Solutions

Demonstration at 3 MWth scale with petcoke as feedstock (China) and integrated assessment for industrial scale-up.

Pilot unit at IFPEN 10 kWth

5 years (2017 ⇒ 2022)

9 partners including:

SINTEF (Coordination + Oxygen carrier) **IFPEN** (Design, techno-economic study) TOTAL (Engineering / procurement) TSINGHUA Univ., DONGFANG Boiler (Design / Construction and operation)

Demo unit

CLC PRINCIPLE

NEW ENERGIES

Intrinsic oxygen separation
 No energy penalty except for CO2 compression
 A surrounists to share leave for Cos distributed and Calid fuels correlated by stars

• Appropriate technology for Gas, Liquid and Solid fuels combustion

• Valuable co-products : N_2 , H_2O

WP3 : Oxygen Carriers and Characterization of Fuel Conversion Phenomena

TGA screening (SINTEF)

- Sample weight <1 g</p>
- Oxygen transfer capacity measurement
- Reaction kinetics
- Stability (SEM analysis)

Batch fluidized bed testing (IFPEN) of TGA selected materials

- 100 g < Sample weight < 200g</p>
- Petcoke reactivity testing
- Agglomeration and stability

Circulating fluidized bed (IFPEN)
 ~50 kg required

Select 2 oxygen carriers for use in demo unit

SCREENED MATERIALS

Materials	Origin	Form	
Ilmenite-No	Norway	Mineral	
Ilmenite-Vet.	Vietnam	Mineral	
Ilmenite-Moz.	Mozambique	Mineral	
Fe-rich ores	Guangxi, China	Mineral	
MnSi _{0.25} syn.	Lab, SINTEF	Synthetic	
MnSi _{0.4} syn.	Lab, SINTEF	Synthetic	
CMTF8440	Lab, SINTEF	Synthetic	
CMTF8341	Lab, SINTEF	Synthetic	
CMTF8332	Lab, SINTEF	Synthetic	
CMTF8431	Lab, SINTEF	Synthetic	
FeMnTi(Mg) syn.	Lab, SINTEF	Synthetic	
GT Mn ore	China	Mineral	
MG Mn ore	China	Mineral	
LY Mn ore	China	Mineral	

- Natural ores
 Cheap and abundant
 Reactivity
 Quick degradation leading to short lifetime
- Synthetic materials
 Mechanical resistance
 Reactivity
 Manufacturing cost

TGA SCREENING RESULTS

NEW ENERGIES

Before

After

Morphological and phase changes

	Ilmenite-No	Ilmenite-Viet	LY Mn ore	CMTF8341	CMTF8431
O ₂ Capacity	++	+	+	++	+++
Phase stability	-	-	-	+++	+
Particle shape stability	+	+	+	+++	++
Porosity formation	high	high	high	low	medium
XRD	Decomposition	Decomposition	Multi phases	Stable	Some precipitation
Reduction kinetics	Medium	medium	fast	medium	very fast

Ilmenites from Norway and Vietnam and a Mn ore from China were chosen for further testing in batch fluidized bed

• CMTF8341 and CMTF8431 synthesis were scaled up for further testing in batch fluidised bed

BATCH FLUIDISED BED UNIT

BATCH FLUIDISED BED AGEING

NEW ENERGIES

• Ageing at 900°C, using CH_4/CO_2 mix for reduction, air for oxidation

Ilmenites require ~50 cycles activation

9

• Titania more reactive than Vietnamese ilmenite

Some agglomeration occured with Titania batches

BATCH FLUIDISED BED AGEING

NEW ENERGIES

LY Mn ore

100 3

3.00 kV

SE2

MEB Auto - Multi SP

100 15 00 41/ HDAsB MEB Auto - Multi SP

nouvelles

• Particles were activated with CH_4/CO_2 for 50 cycles at 900°C, then petcoke was injected

with 33 or 50% steam in fluidizing gas, at 900 or 940°C

- Volatiles are instantly burnt
- Afterwards, petcoke gasification is the limiting step
- Vietnamese ilmenite not as reactive with CO as Titania batches

BATCH FLUIDISED BED AGEING

NEW ENERGIES

• Very stable perovskite reactivity towards CH₄

Reactivity depends on fabrication method

- Could hardly detect any differences by XRD, SEM and Hg porosimetry
- After petcoke testing, strong S poisoning was observed

10 KWth PILOT DESCRIPTION

- Pilot is composed of:
 - 3 bubbling fluidized reactors
 - 1 fuel reactor and 2 air reactors
 - L-valves
 - Control of the solid flowrates
- It is fully automatized to:
 - Control each reactor solid level independently
 - Control independently gas and solid residence times
- Continuous petcoke injection

TESTING PROCEDURE

ACTIVATION OF TITANIA1 AND LY Mn ORE

NEW ENERGIES

• LY Mn ore achieves lower methane conversion and $R_0\Delta X$ than Titania1

Test type	Steam content (%)	Petcoke flowrate (g/h)	Temp. (°C)	OC flowrate (kg/h)			
Ilmenite							
ref	49	118	927	20			
Temp.	50	110	904	21			
Temp.	50	120	898	21			
Petcoke flowrate	50	258	928	21			
Steam content	31	115	929	21			
OC flowrate	50	119	922	10			
LY Mn Ore							
Ref	50	120	930	20			
Petcoke flowrate	50	240	930	20			
Steam content	30	120	930	20			
OC flowrate	50	120	930	30			
Temp.	50	120	900	20			

PERFORMANCE COMPARISON

90

PERFORMANCE COMPARISON

Petcoke flowrate (kg/h)

PRACTICLE CONSIDERATIONS

- Many agglomeration troubles occured, particularly upon heating up the unit with ilmenite
- Porosity increase and formation of an iron oxide layer around the particles

• LY Mn ore :

- No agglomeration troubles during the test, but agglomerates were found in the 2nd air reactor's L-valve and at the outlet of the three reactors
- A significant amount of fines was collected during the test (7kg, i.e. 18,5% of added material)
- Analysis of aged particles is underway

CONCLUSIONS

CMTF perovskites

- Promising stability and reactivity
- Cannot be used with sulfur rich fuel

• Norwegian ilmenite and an Fe-poor Mn ore have been tested in IFPEN's 10 kW_{th} pilot :

- High petcoke conversion achieved with both materials
- Lifetime at low levels of transferred oxygen ($R_0\Delta X \le 1$) is not very high
- Circulation seems easier with the Mn ore but agglomeration issues observed in both cases (can be managed thanks to appropriate design and operating procedures)

Conclusion: Cost of production and material availability will ultimately determine the choice of first oxygen carrier

Thank you for your attention!

Project No: **764697** Project acronym: **CHEERS** Project full title: **Chinese-European Emission-Reducing Solutions**

Type of Action: RIA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764697.

The project is also co-funded from National Key Research and Development Program of China by Chinese Ministry of Science and Technology (MOST) under grant agreement No 2017YFE0112500. 项 目 号: 764697/2017YFE0112500 项目缩写: CHEERS 项目名称: 中欧污染物减排技术研究

项目类型:研究/**示范**

本项目获得了欧盟地平线H2020计划资 助(资助号:764697)及中国科技部重 点研发计划资助(资助号: 2017YFE0112500)

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

