

ALMA MATER STUDIORUM Università di Bologna

EERA AMPEA 16th JPSC meeting & Workshop on "Carbon Capture, Storage & Utilization"

March 10 - 11, 2021

Advanced materials for CCUS (at UniBo)

From nano-membranes to electrodes for CO₂ reduction

<u>M. Giacinti Baschetti</u>, S. Bonduà, V. Bortolotti, L. Pasquini, P. Ceroni, F. Paolucci, <u>G.Valenti</u>

CCUS at UNIBO

- Innovative Membranes for Carbon Capture:
 - Facilitated Trasport membranes for post-combustion Carbon Capture
 - Molecular sieves for pre-combution Capture.
- Modeling CO₂ polymers interaction in **Transport** pipelines
- Coupled wellbore-reservoir flow simulations for CO₂ Geological Storage
- *CO*₂ *Utilization* strategies:
 - Photo-electrochemical reduction
 - Catalytic reduction
 - • •

• ...

Background on membrane separation

Membranes are material barriers that allow the passage of chemical species at different speed, thus allowing their separation.

Their performances are related to their

• **Permeability** related to the flow they can sustain:

$$J_{i} = \frac{P_{i}}{\delta} \left(p_{i-up} - p_{i-down} \right)$$

• **Selectivity** which define the separation ability:

Unfortunately in polymeric membranes a **trade off** exists between these two parameters, that makes difficult the development od highly permeable yet selective membranes.

Membranes and CO₂ Capture

Different approaches to CO₂ Capture

NanoMaterials Enhanced Membranes for Carbon Capture

Grant Agreement no. 727734

Facilitated Transport Hybrid Membranes

Molecular Sieves Hybrid Membranes

CO₂ permeability

NANOMEMC² upper bound

Casadei R.; Giacinti Baschetti M. et. Al. <u>Pebax[®] 2533/graphene oxide nanocomposite membranes for carbon capture</u>, «MEMBRANES», 2020, 10 Venturi D.; Chrysanthou A. et Al., <u>Arginine/Nanocellulose membranes for carbon capture applications</u>, «NANOMATERIALS», 2019, 9,

Geological CO₂ storage

 CO_2 injection entails sudden changes in CO_2 pressure and temperature with possible phase transitions that have severe effects on the integrity of wells and on the multiphase flow in the reservoir .

T2Well-ECO2M (LBNL, Berkeley, USA) is an integrated wellbore-reservoir numerical simulator for non-isothermal, multiphase, multicomponent flows that handles CO₂ injection in depleted reservoirs.

CO₂ injection Well Head (WH) pressure, Bottom Hole (BH) pressure, WH temperature and BH temperature evolution.

Phase diagram with the CO_2 saturation line, time evolution of WH and BH conditions and P-T profiles along the wellbore.

The geothermal research group at DICAM is involved in the improvements of the T2Well-ECO2M code.

Numerical modeling entails pre-postprocess tools

Mesh visualisation with **TOUGH2Viewer** (developed at DICAM) Conceptual model can consist of several domains defined by different petrophysical properties, wellbore and completion zone, surrounding rock, caprock reservoir and bedrock domain and also atmosphere.

CCS injection site 2D radially symmetric grid 8,160 block: left - 3D projection,

right - Horizontal mesh resolution

CO₂ Conversion: (photo) electrochemical Reduction

- The (photo)electrochemical reduction reaction of CO₂ (CO2RR) is very appealing for storing the excess of renewable energy into chemical bonds
- CO₂RR requires electrocatalysts to stabilize the CO₂^{•–} radical and intermediates
- Multiple electron-proton transfer reaction leads up to 16 different products some of the most valuable are: ethanol (C₂H₅OH), methane (CH₄) and ethylene (C₂H₄)

CO₂ electrolysis

CO₂ Conversion: Electrochemical Reduction

- It can be performed at room temperature and ambient pressure
- Low energy requirements (close to thermodynamic threshold)
- Electric power compatible with renewable sources
- Highly controllable
- High conversion efficiency
- Control over reaction products

Electrochemical conversion is advantageous for its feasibility and industrial perspective

Heterogenous Electrocatalysis

- Nanocomposite materials with innovative design:
- Increasing the number of active sites
- ➡ Increasing intrinsic activity

- High surface area
- High chemical stability
- Improve the selectivity and efficiency
- High currents with lower overpotentials

@Ni/NiO @Cu/CuO @Sn/SnO @CeO2

The CO2NOR H2020 project

COmbined suN-Driven Oxidation and CO₂ Reduction for renewable energy storage

Nanostructured WO₃/BiVO₄ photoelectrode

Our instrumentation

Analysi

Ionic Chromatographs Analysis of liquid products

Electrochemical In Situ TEM

Imaging during electrochemical measurements

Gas Diffusion Layer To applicate the electrocatalyst in the electrolyser cell

Nanocomposite material: CNT@CeO₂

-0,5

-0,4

-0.3

E (V vs RHE)

-0,1

0,0

-0,2

ENERGY MATERIALS

www.acsaem.org

Water-Mediated ElectroHydrogenation of CO₂ at Near-Equilibrium Potential by Carbon Nanotubes/Cerium Dioxide Nanohybrids

Article

Nanocomposite material: Boron Doped Diamond @CeO₂

Very stable material with high FE for CO₂ conversion to Formic acid

ALMA MATER STUDIORUM Università di Bologna

Thank you!!

www.unibo.it

ALMA MATER STUDIORUM Università di Bologna

CONTACTS

Marco Giacinti Baschetti

Giovanni Valenti

marco.giacinti@unibo.it

g.valenti@unibo.it

Luca Pasquini

luca.pasquini@unibo.it

www.unibo.it