

CERAMIC GAS SEPARATION MEMBRANES FOR THE USE IN CCSU

12.03.2021 I WILHELM A. MEULENBERG, STEFAN BAUMANN, OLIVIER GUILLON

Mitglied der Helmholtz-Gemeinschaft

24.03.2021

2

JÜLICH

Applications of Mixed Ionic Electronic Conductors

Gas Supply

Power Plants, Cement Industry (GREEN-CC), Glas Industry, Steel Industry, Medical, etc.

Membrane Reactors

Syngas-Production, Methanation, Dehydration, Water Gas Shift Reaction, etc.

> CO₂ Utilisation Commodity Chemicals / **Chemical Energy Carriers Environmental Applications**

e.g. O₂, H₂, CO₂

 $CO_2 + 4 H_2 \rightarrow 2 H_2O + CH_4$

Oxyfuel Combustion

CO₂ + 8 Hⁱ+ 8 e → CH₄ + 2 H₂O 4 H₂O → 2 O₂ + 8 H' + 8 e CH,+H,O

Methane Synthesis

Potential Applications of Membranes in Catalytic Membrane Reactors (CMR)

CO₂-Utilisation, Chemical Energy Carriers, Environmental Applications

W. Deibert, M. E. Ivanova, S. Baumann, O. Guillon, W. A. Meulenberg Journal of Membrane Science (2017)

Potential Applications of Membranes in Catalytic Membrane Reactors (CMR)

CO₂-Utilisation, Chemical Energy Carriers, Environmental Applications

Reaction: $CO + H_2O \rightarrow CO_2 + H_2$

Examplary Catalytic Membrane Reactors

Catalytic Partial Oxidation of Methane

T = 900 °C, catalyst: Ni

Reaction: $CH_4 + 0.5 O_2 \rightarrow CO + 2 H_2$

Production of Syngas

Vacuum or sweep gas

 $2 H^+ + 2 e^- \rightarrow H_2$

H₂

Gas Separation Membranes

Microporous Membranes

Dense Mixed Ion-Electron Conducting Membranes

Development Strategy and Challenges

Materials Development

Microstructuring

Component Manufacturing

- high ionic / electronic conductivity
- stability in agressive environment
- thermal stability
- compatibility
- low cost material
- availiability of materials

- thin films for high performance
- porous catalytic layers
- low polarisation in support
- no deformation of membrane
- no delamination of single layers
- thermomechanical stability

- adjustment of sintering steps
- module design and sealing
- no deformation of membrane
- thermomechanical stability
- fast, scalable and low cost processing technologies

Scientific work packages

GREEN-CC Project (EU - FP7)

Selected Materials

Two Route Strategy

Single phase perovskites

 $\begin{array}{c} \text{La}_{0.6}\text{Sr}_{0.4}\text{Co}_{0.2}\text{Fe}_{0.8}\text{O}_{3\text{-}\delta}\\ \text{(reference)} \end{array}$

- ✓ High performance
- Asymmetric membranes developed
- ✓ Good stability in CO₂ Limited stability in SO₂

Ionic conductor:

- \checkmark Doped ceria
- ✓ stabilized zirconia

Dual phase composites

Electronic conductor:

- ✓ Spinels
- ✓ doped ZnO
- ✓ perovskites

Composite Oxygen Transport Membranes

Cer-Cer Composite Concept

- Ionic conductor: Ce_{0.8}Gd_{0.2}O_{2-d} (CGO) Electronic conductor: FeCo₂O₄ (FCO)
- Surface activation necessary even at high membrane thicknesses due to short length of triple phase boundaries (TPB)
- Surface activation (lab conditions): $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (LSCF)
- Surface activation (in application): composite porous backbone infiltrated with tailored catalysts

M. Ramasamy et al., J Amer Ceram Soc (2016)

Selected Materials

- Maximum performance at 85wt% CGO (above percolation threshold)
- Performance equal to LSCF @800-850 °C
- Stability in CO₂ and SO₂ (cf. WP3)

Mitglied der Helmholtz-Gemeinschaft

SEVENTH FRAMEWOR

Dual Phase OTM Stability in Acid Gases (SO_x)

- 85:15 wt%-ratio non-activated
 - \rightarrow low permeation rates
 - \rightarrow surface exchange sensitive
- Instantaneous drop of permeation rate
- Stable performance in 500 ppm SO₂
- full flux recovery
- Post-test analysis confirmed no sulphate formation
- →competitive adsorption
- Slight increase in performance due to surface roughening

Objectives Proof of Concept

Design and build of a membrane module

- Planar stacks with asymmetric membranes
- Effective area at least 300 cm²
- 4 end operations

Proof of performance

- Operating temperature 750 900 °C
- Leakage lower than 2%
- Long term (1000 h) proof-of-concept : Testing in a synthetic flue gas stream

Development of Membrane Components

Lamination of single tapes

$$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3}$$

Size: 4 x 7 cm²

Assembling of OTM Module: Area: 420 cm²

Size: 7 x 10 cm²

Forschungszentrum

Simulation-Supported Module Design

Key issues/activities

- Mechanical stress analysis
- Homogeneous gas flow ٠
- Joining techniques for ceramic-metal • materials

CFD modeling shows homogeneous velocity distribution of air flow

Grant Agreement Number 608524

SEVENTH FRAMEWOR

Thank you for your attention