

Fuel Cells & Hydrogen



### **EERA Joint Programmes FCH and Energy Storage** with support from the Horizon 2020 project **BALANCE**

## Putting the <u>hy</u>drogen into hybridization: how fuel cells and electrolysers can support energy storage

WHEN: November 5, 2019, 11:00-18:30 WHERE: ENEA Headquarters, Lungotevere Thaon di Revel 76, Rome, Italy

Joint workshop of the EERA JPs FCH and Energy Storage, targeting the higher level of the scientific community and strategy makers for Research & Innovation in Europe. It aims to bring together views on the utilization of hydrogen in hybridization with various technologies as means for energy storage. Technological and infrastructural updates will be merged with debates on sustainability aspects and the pathways for implementation in the coming EU Framework Programme, Horizon Europe, and beyond.

## Agenda

| Coffee and registration                                                            | 11:00 |                         |  |  |  |
|------------------------------------------------------------------------------------|-------|-------------------------|--|--|--|
| Setting the stage                                                                  |       |                         |  |  |  |
| Welcome, Scope of the workshop and expected outcome                                | 11:20 | S. McPhail (JP FCH)     |  |  |  |
| Presentation of JP FCH: research priorities and roadmaps                           | 11:30 | JP FCH coord.           |  |  |  |
| Presentation of JP ES: research priorities and roadmaps                            |       | JP ES coord.            |  |  |  |
| Mission Innovation Challenge 8: Upscaling hydrogen                                 | 12:00 | J. Scholz (MI-IC8)      |  |  |  |
| Mission Innovation Challenge 6: Clean Energy Materials in energy storage           | 12:15 | M. Kozdras (MI-IC6)     |  |  |  |
| Towards an Autonomous Material Development Platform                                | 12:30 | H. Ihssen (HHG)         |  |  |  |
| Sustainability implications for different energy storage technologies              |       | M. Baumann (JP ES)      |  |  |  |
| Demonstrating the flexibility of hydrogen                                          | 13:00 | M. Testi (FBK)          |  |  |  |
| Lunch                                                                              | 13:15 |                         |  |  |  |
| Hybridization                                                                      |       |                         |  |  |  |
| Energy storage in the gas grid                                                     | 14:40 | G. Botta (KIWA)         |  |  |  |
| Energy storage and mobility fuels                                                  | 15:00 | A. Goede (JP ES)        |  |  |  |
| Energy storage and geology                                                         | 15:20 | P. Lopion (FZJ, JP FCH) |  |  |  |
| Energy storage and sector coupling                                                 | 15:40 | L. Wang (BALANCE)       |  |  |  |
| Coffee Break                                                                       | 16:00 |                         |  |  |  |
| Socio-Environmental sustainability                                                 |       |                         |  |  |  |
| A Circular Economy approach for battery materials                                  | 17:00 | P.L. Porta (ENEA)       |  |  |  |
| LCA of FCH: latest developments                                                    |       | A. Agostini (IEC)       |  |  |  |
| Round-table: how to compare sustainability degrees in energy storage               | 17:20 | All                     |  |  |  |
| Financial sustainability                                                           |       |                         |  |  |  |
| Prospects for Partnerships in Horizon Europe                                       | 17:50 | C. Pocaterra (APRE)     |  |  |  |
| Round-table discussion:                                                            |       | All                     |  |  |  |
| <ul> <li>Key focus areas for JP FCH and JP ES</li> </ul>                           |       |                         |  |  |  |
| <ul> <li>Opportunities for next joint actions: HEU, EERA, MI frameworks</li> </ul> |       |                         |  |  |  |
| Wrap-up and presentation at the JP ES Workshop 7-8 November                        |       |                         |  |  |  |
| Close of Workshop                                                                  | 18:30 |                         |  |  |  |



# Fuel Cells &







# Attendees

| Alessandro    | Agostini            | Jari             | Kiviaho           |
|---------------|---------------------|------------------|-------------------|
| V.L.          | Barrio              | Mark             | Kozdras           |
| Claudia       | Bassano             | Peter            | Lopion            |
| Manuel        | Baumann             | Nikolaos         | Margaritis        |
| Marcin        | Blesznowski         | lvan             | Matejak           |
| Domenico      | Borello             | Stephen          | McPhail           |
| Giulia        | Botta               | Elisabetta       | Mecozzi           |
| Marcello      | Capra               | Carla            | Menale            |
| Alessandro    | Cavalli             | Michele Vincenzo | Migliarese Caputi |
| Christodoulos | Chatzichristodoulou | Andrea           | Monforti Ferrario |
| Erika         | Cherubini           | Giulia           | Monteleone        |
| Giuseppe      | Cherubini           | Margherita       | Moreno            |
| Daniele       | Consoli             | Vincenzo         | Mulone            |
| Ezilde        | Costanzo            | Martin           | Paidar            |
| Massimiliano  | Della Pietra        | Claudia          | Paoletti          |
| Livia         | Della Seta          | Gianluca         | Pasini            |
| Vincenzo      | Delle Site          | Stefano          | Passerini         |
| Mariasole     | Di Carli            | Matteo           | Pessia            |
| Vito          | Di Noto             | Giacomo          | Petretto          |
| Adel          | El Gammal           | Raffaele         | Pirolli           |
| Jonathan      | Fagerström          | Chiara           | Pocaterra         |
| Marie-Laure   | Fontaine            | Pier Luigi       | Porta             |
| Stefano       | Frangini            | Paola            | Rizzi             |
| Domenico      | Gaudioso            | Ville            | Saarinen          |
| Fabrizio      | Giamminuti          | Mauro            | Scagliotti        |
| Myriam E.     | Gil Bardaji         | Julius           | Scholz            |
| Giovanni      | Giordano            | Svein            | Sunde             |
| Paola         | Gislon              | Matteo           | Testi             |
| Antonella     | Glisenti            | Mario            | Tului             |
| Adelbert      | Goede               | Daria            | Vladikova         |
| Holger        | Ihssen              |                  |                   |





Fuel Cells & Hydrogen





#### Key messages

- In the mission to full decarbonization of energy supply, fluctuating renewable energy will become a majour source: electron transport only will not be able to match such supply of energy with demand (in terms of application, time, location and infrastructure), and molecular forms of energy capture and transport will be required.
- Power-to-X (through electrolysis and further chemical transformation) provides the possibility to couple grids (gas and power) and sectors (industry, mobility, end use), increasing capacity and flexibility
- The cost-effectiveness of infrastructure required for transportation and distribution of energy through pipelines versus electric cables favour the former over the latter 20-25 times over. Hydrogen admixture to natural gas is widely proven up to 20% and can be pushed to 100% in specific cases where the (distribution) grid is suitable; new composite pipeline materials make this perspective all the more realistic
- Large-scale storage of hydrogen can take place in salt caverns (mainly dislocated in northern Germany), providing many times the required capacity for storage required by the current electric grid (26,000 TWh versus ca. 200 TWh in 2018)
- Aviation fuels in particular are critical in terms of decarbonization/sustainability, as kerosene is still unmatched for this application (hydrogen is too bulky, batteries are too heavy, biofuels would require too much land use)
- High-temperature fuel cell systems are a flexible transition technology, utilising natural gas and other hydrocarbons for multiple generation of products (power, heat, hydrogen)
- Material resources will be crucial for a sustainable and autonomous economy. Critical raw
  materials must be maintained in the economies where end use takes place (recycling) to
  minimize new imports from strategically sensitive countries. Steel, concrete, aluminium
  and copper will not be sufficient by 2035 to fabricate the equipment required for the
  expected increase in renewable energy exploitation.
- Mission Innovation Challenge 6 establishes a framework for mostly bilateral collaboration on advanced initiatives for new energy materials, such as the design of materials based on a combination of artificial intelligence and robotics for high-throughput characterization, achieving tenfold reduction in costs and timescale of new material discovery. 8 November 2019 a Canada-Germany workshop will be held in Berlin on further deployment of such an Autonomous Material Development Platform.
- Mission Innovation Challenge 8 is focusing on the upscaling of hydrogen production and commercialization, though the showcasing of hydrogen valleys and harmonizing regulations and standards for international trade in particular. A third focus area is hydrogen admixture in the natural gas grid – workshop on this will be held in Chester, UK, 28-29 November 2019.
- In the assessment of the sustainability of a given technology, it is crucial to consider all
  relevant factors (i.e. not only greenhouse gas emissions, but using the entire planet as the
  ultimate boundary), paying particular attention to consequential interpretation (where all
  behavioural consequences of a given displacement of technology or process are taken
  into account, including rebound effects) as opposed to only attributional modelling
  (straightforward 1-for-1 substitution effects). Thus, 1 MJ of renewable electricity
  generated ultimately displaces only 0.1 MJ of fossil electricity. The complexity of this
  exercise must be understood and mid-point (product/process) assessments should only
  be treated as such, and not as an indicator of the all-encompassing "sustainable" epithet.